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The behavior of band bending in nonreactive interfaces between thin CsO„ films and GaAs(110) is
studied by photoemission. Successive cesium and oxygen exposures change the CsO stoichiometry in a
way that leads to a back-and-forth switching of overlayer metallicity and band bending. For both n- and
p-type GaAs(110), oxygen-rich nonmetallic overlayers create almost flat-band conditions, while cesium-
rich metallic overlayers result in Fermi-level positions close to midgap. These observations demonstrate
the dominant influence of metal-induced gap states in nonreactive metal-semiconductor interfaces.

PACS numbers: 73.30.+y, 73.20.Hb, 79.60.6s

The investigation of metal-semiconductor interfaces
has raised increasing interest in the recent past mainly
due to technological aspects. ' Despite widespread ap-
plications of Schottky diodes, the basic mechanisms of
Schottky-barrier formation are still not fully understood
and are being discussed in a controversial way. It is by
now well accepted that interfacial states in the semicon-
ductor band gap play a crucial role in determining band
bending and hence the Schottky-barrier height. Essen-
tially two types of such interfacial states are discussed:
(i) defect states that are connected with vacancies or an-
tisite defects in the interfacial layer of the semiconduc-
tor, ' and (ii) virtual gap states of the semiconductor
coupling to itinerant electronic states of the overlayer
that penetrate a few A into the semiconductor. In the
case of metallic overlayers, these states are denoted as
metal-induced gap states (MIGS). Both types of inter-
facial states can play a role at metal-semiconductor in-
terfaces, raising the question of their relative importance
in determining the Fermi-level position. In the case of
GaAs(110), both the defect states and the MIGS have
been claimed to result in a Fermi-level position close to
midgap. '

In this context, core-level photoemission (PE) from in-
terfaces formed by depositing thin metal films on single-
crystalline semiconductor substrates has proven to be a
powerful tool for gaining detailed information on band
bending from the binding energies (BE) of semiconduc-
tor core levels. In addition, the PE line shapes contain
information on interfacial reactivity and overlayer metal-
licity, allowing an analysis of their influence on band
bending during interface formation. Recently, an abrupt
change in Fermi-level position upon metallization of the
overlayer was observed for the reactive Tm/GaAs(110)
interface; it was attributed to a change in the dominant
band-bending mechanism from defect-state to MIGS
pinning. ' A dominance of MIGS relative to defect
states was also concluded from a PE study of the
Na/GaAs(110) interface, " where the same Fermi-level

positions were obtained for reactive and nonreactive in-
terfaces in the case of thick metallic overlayers.

In the present Letter, we report on the first observa-
tion of an adjustable band bending as a function of over-
layer metallicity for nonreactive interfaces of Cs oxides
with GaAs(110). While approximately 2 monolayers
(ML) of Cs on both n and p--type GaAs(110) lead to in-

terfacial Fermi-level positions close to midgap, addition-
al deposition of oxygen causes a drastic decrease in band
bending, with Fermi-level positions close to those of the
uncovered substrates. This behavior is explained by oxi-
dation of the Cs overlayer, i.e., loss of its metallic prop-
erties, while the GaAs substrates are chemically
unaffected. Consecutive deposition of Cs leads again to
a metallization of the overlayer and hence to Fermi-level
positions close to midgap, as in the original cesium-
meta1-exposed case, while subsequent oxygen exposure
results in a further strong decrease in band bending.
These observations strongly support the applicability of
the MIGS model in the case of nonreactive interfaces.

The PE measurements were performed with synchro-
tron radiation from the HE-PGM-2 beam line at the
Berliner Elektronenspeicher ring fur Synchrotronstrah-
lung (BESSY) employing a hemispherical electron-
energy analyzer operated in normal-emission geometry.
The overall-system resolution (FWHM) was =0.2 eV
(at hv =84 eV), and BE changes could be determined to
an accuracy of ~0. 1 eV. Mirrorlike (110) surfaces
were obtained by cleavage of Si-doped n-type GaAs or
Zn-doped p-type GaAs (with dopant concentrations of
=3x10' atoms/cm ), that were kept at temperatures
of 140 ~ 20 K. Cs films were deposited from commercial
chromate dispensers with deposition rates of =0.5
ML/min. Relative coverages were calibrated via deposi-
tion time (estimated accuracy of + 10%), while absolute
coverages were obtained from the coverage dependence
of the plasmon energy (estimated accuracy of + 30%). '

During oxygen exposure the ion gauge was kept operat-
ing, and a small amount of molecular oxygen may be ac-
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tivated. '

Figure 1 shows representative wide-scan PE spectra
for a cleaved n-type GaAs(110) surface, and (b)-(d)
after successive cesium and oxygen exposures at =140
K, as well as (e) after annealing at 800 K. The spectrum
from freshly cleaved n-type GaAs(110) [Fig. 1(a)] is
dominated by intense emission from the As-3d and Ga-
3d core levels, while the valence-band emission is very
weak. Deposition of 2 ML of Cs [Fig. 1(b)] results in
additional emission lines from the Cs-Ss and Cs-Sp core
levels as well as in strong satellites for all PE lines at =2
eV higher BE (indicated by arrows) that are assigned to
extrinsic plasmon-energy losses in the Cs layer. Addi-
tional adsorption of 12 L [1 Langmuir (L) =10 Torr
Sec] oxygen [Fig. 1(c)] leads to a quenching of these sa-
tellites as well as to the appearance of a multipeaked,
0-2p-derived valence-band emission that is assigned
mainly to Cs202 (Refs. 14 and 15). Upon subsequent
deposition of 2 ML of Cs [Fig. 1(d)], this oxide layer is
chemically reduced mainly to Cs20, leading again to the
appearance of plasmon-loss satellites.

The absence of chemically shifted components in the
As-3d and Ga-3d core-level PE lines [Figs. 1(a)-1(d)]

Ga-3d T=140K hv = 84eV

11LO,

clearly shows that the oxidation of the Cs adsorbate lay-
er is not aA'ecting the chemical composition of the sub-
strate at the interface. On the other hand, annealing of
a CsO /GaAs(110) interface at =800 K [Fig. 1(e)]
leads to additional components shifted to higher BE by
=3.5 eV (As 3d) and =1 eV (Ga 3d), respectively, due
to substrate oxidation. ' These observations show that
the CsO„/GaAs(110) interface formed at =140 K is
nonreactive and abrupt.

In Fig. 2, the Ga-3d PE core-level lines are shown in
more detail for both n- and p-type substrates, exposed
successively to cesium, oxygen, cesium, and oxygen. The
striking information contained in Fig. 2 is the fact that
even repeated exposures with cesium and oxygen, respec-
tively, shift the Ga-3d lines in opposite directions for
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FIG. 1. Wide-scan PE spectra of (a) a cleaved n-type
GaAs(110) surface at T=140 K, and (b)-(d) after successive
depositions of cesium and oxygen. Plasmon-loss satellites are
marked by arrows. For comparison, the spectrum of a
CsO„/GaAs(110) interface after annealing at =800 K is
shown in (e). The spectra are normalized to equal height.
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FIG. 2. Ga-3d PE spectra of cleaved n- and p-type
GaAs(110) surfaces and after successive cesium and oxygen
exposures (T=140 K). Dashed subspectra represent the sub-
strate bulk, dotted subspectra represent the substrate surface,
and the shaded subspectra correspond to plasmon-loss satellites
that are assigned to overlayer metallicity. The shoulder at
=19 eV BE in (e) is attributed to 0-2s emission. The vertical
solid line traces the positions of the Ga-3dg2 components.
Note the obvious correlation of band-bending-induced BE
shifts and overlayer metallicity monitored by plasmon-loss sa-
tellites. The spectra are normalized to equal height.
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both n a-nd p-type substrates. Spectra (a) and (b) at
the bottom of Fig. 2 reveal that the initial deposition of 2
ML of Cs causes BE shifts of =0.6 eV in opposite direc-
tions for n- and p-type GaAs, which are attributed to
band bending towards a common Fermi-level position
close to midgap typical for alkali-metal/GaAs(110) in-
terfaces. '" The appearance of a plasmon-energy-loss
satellite (shaded subspectrum) at =2 eV higher BE
[Fig. 2(b)] reflects a delocalization of valence electrons
in the Cs layer, indicating overlayer metallization. It
was previously found that a plasmon-loss energy of =2
eV is reached when the Cs overlayer metallizes at cover-
ages between 1.5 and 2 ML. ' In this way we use the
plasmon-loss satellites as a monitor for metallization.
Upon additional adsorption of 12 L oxygen, the
plasmon-loss structures disappear [Fig. 2(c)], signaling a
demetallization of the overlayer due to oxidation. This
causes the backshifts of the Fermi-level positions to al-
most the original values observed for freshly cleaved n-
and p-type GaAs(110). By additional deposition of 2
ML of Cs, the metallicity of the overlayer as well as the
Fermi-level positions close to midgap are reestablished
[Fig. 2(d)], while another exposure to 11 L oxygen [Fig.
2(e)] results again in a nonmetallic overlayer accom-
panied by a strong decrease in band bending.

The spectra in Fig. 2 were least-squares fitted with a
superposition of Gaussian lines for instrumental and in-
homogeneous broadening convoluted with a Lorentzian
containing lifetime effects (FWHM =0.2 eV). They
consist of spin-orbit-split doublets with intensity ratios
close to 3:2 and a splitting of 0.46 ~0.02 eV, "' plus a
background that was approximated in all cases by
straight lines. This curve-fitting procedure is most clear-
ly visible in the spectra of the freshly cleaved GaAs sub-
strates presented in Fig. 2(a), which are deconvoluted
into bulk (dashed) and surface (dotted) components.
Note also the Ga-3d BE difference of =1.3 eV for n-

and p-type GaAs that reflects the diferent Fermi-level
positions in the GaAs band gap close to the conduction-
band minimum (CBM) in case of n-type and the
valence-band maximum (VBM) in case of p-type
GaAs(110), respectively.

The variation in band bending upon successive cesium
and oxygen exposure on GaAs(110) kept at =140 K is

shown in more detail in Fig. 3. This data plot clearly
shows that a common Fermi-level position is obtained for
n and p-ty-pe GaAs(110) for a Cs coverage of 2 ML, '

while overlayer oxidation leads to a decrease in band
bending for both doping types, approaching flat-band
conditions. The second Cs exposure results again in an
increase in band bending, but a common Fermi-level po-
sition is no longer obtained. The second oxygen exposure
flattens the bands again.

In this way it becomes clear that the switching of over-
layer metallicity is directly related to the changes in
band bending. Such a behavior unambiguously rules out
defect states near midgap as a possible cause for band
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FIG. 3. Variation in Fermi-level position with respect to the
VBM (accuracy of + 0. 1 eV) for n and p-typ-e GaAs(110),
kept at =140 K, as a function of successive depositions of cesi-
um and oxygen. The data are obtained from least-squares fits
of As-3d and Ga-3d PE spectra (see Fig. 2) and contain a
correction for finite sampling depth of the PE measurements
(Refs. 11 and 12). The initial band-bending curve for Cs/p-
GaAs(110) is taken from Ref. 12.

bending at these interfaces, since defects can obviously
not be removed by oxidation. On the other hand, the ini-
tial Fermi-level positions for n- and p-type GaAs(110)
are not completely reproduced by oxidation of the metal-
lic overlayer, reAecting the fact that the CsO /
GaAs(110) interface represents some kind of a semicon-
ductor heterojunction. ' Therefore, the Fermi-level posi-
tions for n and p-type-GaAs(110) are expected to be
governed by the energetic positions of the CBM and
VBM, respectively, of the cesium-oxide overlayer, which
in turn may be expected to change with overlayer
stoichiometry. Such a dependence on stoichiometry
could be the reason for our observation of slightly
different Fermi-level positions after the first and second
oxygen exposures (see Fig. 3).

Diferences in overlayer stoichiometry may also be re-
sponsible for the fact that the original metal-induced
band bending is not fully reproduced upon the second
deposition of 2 ML of Cs on the oxidized interface. The
chemical reduction of Cs20q during the second Cs depo-
sition [see Fig. 1(d)] may produce a mixture of Cs20
and metallic Cs that is characterized by a lower density
of conduction electrons than is efective in an elemental
Cs overlayer. Such a mechanism is actually supported
by the lower plasmon energy of =1.5 eV observed in this
case [see Fig. 2(d)]. Furthermore, inhomogeneities in
the overlayer may result in some kind of a Cs/CszO/
GaAs(110) multilayer structure, where the inhuence of
the cesium-metal layer on the semiconductor is screened
by the oxide layer. Both effects tend to decrease the den-
sity of MIGS, which may then not be sufficiently high
for a complete band bending to a common Fermi-level
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position for both n- and p-doped .substrates, as observed
(see Fig. 3). Such a common Fermi-level position is
theoretically expected for band bending through
MIGS ' and has been observed recently upon metal-
lization. "'

In summary, the present work clearly shows that the
Fermi-level position at nonreactive interfaces between Cs
oxides and GaAs(110) is directly related to the metallici-
ty of the overlayer. This observation provides strong evi-
dence for the validity of the MIGS model, and con-
clusively rules out the concept of defect states close to
the center of the band gap of GaAs as the origin of the
observed band-bending eAects in the case of nonreactive
interfaces.
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