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Surface-Induced Resistivity of Ultrathin Metallic Films: A Limit Law
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We study the variations of the electrical conductivity o. with thickness d of ultrathin metallic films. In
the limit gkr « I, where g is the correlation length describing the film surface roughness and kF is the
electron Fermi wave vector, we show that o follows a universal law, o.-d, independent of any adjust-
able parameter. This law accounts for recent experimental data on CoSi2 down to d =10 A. Moreover,
the measurements of a are well fitted when we introduce into its theoretical expression the values of the
surface roughness parameters recently estimated from electron microscopy.

PACS numbers: 73.60.Aq, 72. 10.Fk, 73.50.Dn

The problem of the influence of surfaces on the electri-
cal conductivity of thin metallic films was first tackled by
Thomson. ' Later, Fuchs and Sondheimer improved
Thomson's formulation. All these theories, which were
reviewed by Ziman, are developed in a classical frame-
work. Following ideas on surface roughness encountered
in the work of Ziman, Prange and Nee gave the first
quantum treatment of the surface-limited resistivity.
This theory was applied to semiconductors for which
molecular-beam epitaxy allows one to obtain quantum
wells thinner than 100 A. The same technique has been
applied to prepare metallic samples of CoSi2 as thin as
60 A; Hensel et al. ' measured conductivity and fitted
their results with a quantum surface scattering theory
put forward by Tesanovic, Jaric, and Maekawa. " More
recently, Badoz et al. and others have extended the con-
ductivity measurement in CoSiq Alms to thicknesses
down to 10 A. ' ' However, this raises some new
theoretical questions because for such small thicknesses,
the theory of Ref. 11 gives a variation too smooth to ac-
count for the new conductivity data.

First of all, we note that the number of subbands occu-
pied by the electron gas is much higher in a metallic film
than in a semiconducting quantum well. In the later
case, due to the small density of charge carriers, only one
to two subbands play a role; conversely. , in CoSi2 samples
considered hereafter, the number N of occupied sub-
bands can be calculated by the formula N = (3n/tt) 't d,
where n is the carrier concentration. For n =3 x 10
cm, N —0.3d with the thickness d expressed in A;
thus in the range 10 & d (200 A, N changes from 3 to
60. High values of N imply significant intersubband

Ho=p /2m+ VY(z ——, d)+ V Y( —z ——,
' d), (1)

where Y(z) is the step function and V (V-) is the poten-
tial height outside the well for z & —,

' d (z & ——,
' d).

Eigenfunctions and eigenenergies of Hp are simply

(r
~

vk) =5 ' e'" p, (z), 'E,q=E, +h k /2m. (2)

S is the are of the film surfaces, v is the subband index,
and p and k are two-dimensional vectors in direct and
reciprocal spaces, respectively. If one of the two surfaces
is not perfect, for example the one near z =

2 d, its equa-
tion becomes z = —,

' d+f(p) with f(p)«d. (We can
take account easily of both surfaces, but in order to sim-

plify what follows we assume only one nonideal surface
to exist. ) The Harniltonian is now changed into Ho+ U,
where

electron transitions; their influence on conductivity can
be studied by the same techniques that Siggia and
Kwok' used to take account of intervalley scattering in
silicon. The aim of this Letter is to generalize the
Prange-Nee formulation of scattering by surface rough-
ness, to adapt the Siggia-Kwok method to the case of
metals, and to explain the experimental data on CoSi2 as
published in Refs. 12-15. In particular, we wi11 point
out an entirely general law for the dependence of o. on
thickness d.

Expression of the conductivity. —In an ideal film with
thickness d, the surfaces are perfect planes, perpendicu-
lar to the z axis and defined by the equations z = ~ —,

' d.
In that case, the Hamiltonian of a charge carrier (in
Cosiz the carriers are holes) may be written

U= V/Ylz ——,
' d —f(p)] —Y(z —

2 d)I = —Vf(p)8(z ——,
' d) .

Calculations will be made to lowest order in the surface roughness f(p).
The general expression of the conductivity of a two-dimensional degenerate gas, the charge carriers of which are
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elastically scattered by the potential U, is given (for example, in Refs. 17 or 18) in the form

(C(E)]„=

2 2 N A'

(Ep E—,)(E, E—, )lC '(Ep)1„, (4)
d v= 1 v'=I

where Ez is the Fermi energy and N is the number of subbands with minimum E, less than Ez. C (E) is the inverse
matrix of C(E) defined by its elements

Z Z ~ ~, 'Z I & vk I U I
pk'& I'k 'S(E E,g—)6(E E„g)—

k k' p

When U is given by Eq. (3), we get

SI&vkIUI v'k') I'=A,A, „d'pe'" ""&f(p')f(p'+p)). (6)

This last expression involves parameters A„=Vp, ( & d) which are easily calculated from the characteristics of the ideal
film and the Fourier transform of the autocorrelation function,

fO

&f(p')f(p'+p)) =—„dp'f(p)f(p+p'),

which characterizes the surface roughness. If 5, describes the root mean square of the height of the bumps on the sur-
face and g is the roughness correlation length, the autocorrelation function for an isotropic surface can be written

&f(p')f(p'+ p)) =A'G(p/&),

where the function G will be clarified hereafter. Now, defining F(q) as the Fourier transform of G(p), we get

8
I &vkI UI v'k'&

I
=A,A, h 0 F(C I

k —k'I ) .

Finally the expression for the conductivity reduces to
IV 1V

k,'k,'(D -')„;
41l' 6A v=1 v'=1 (10)

k. is the Fermi wave vector of subband v, k, = [(2m/A )(Ep —E,)] '~, and D ' is the inverse matrix of D defined by
its elements

d6(2m 2 r 2~
D„,= A, d8 6, ,k„gA„F(gk,„)—A, k,k, cosH F((k,„)4~'h' p=l

with

k„=(k,2+k, —2k,k„cosg)'

For the chosen surface roughness model, the two equa-
tions (10) and (11) give an exact expression of the con-
ductivity (in the Born approximation). As the A„are
proportional to m ', D„and cr are finally m indepen-
dent. This point is important because it proves that it is
not necessary to know the carrier mass for fitting con-
ductivity measurements through formula (10).

Limiting expressions. —These results can be simplified
in the special case of physical interest where the correla-
tion length g is much less than k~ ', where k| is the larg-
est of the Fermi wave vectors k,. In the limit (k~&&1,
we have gk„,« I for all v, v'~N and we get from Eq.
(11)

D„=8, , F(0)k, A, g A„.d'g'm'" 2~'S4 =1

Now D is a diagonal matrix whose inverse is trivial.
Moreover, let us assume that the carrier wave functions
are almost entirely confined inside the film; then we can
take V as infinite as it is easy to verify that

Q
2 2 2

lim A, =
md

Finally, in these limits, we can obtain for the conductivi-
ty

e' d' 6 Jv

F(0) ~(~+ 1)(2~+ 1),=| v~

(13)

This expression is the key to understanding the variations
of a with d, providing that we do not forget that N and
k, depend on the thickness d.

We remark that when gk1 «1 the variations of cr with

1303



VOLUME 62, NUMBER 11 PHYSICAL REVIEW LETTERS 13 MARCH 1989

d are not sensitive to the exact form of the autorcorrela-
tion function that characterizes the surface roughness
and are independent of the correlation length (. At fixed
carrier density, when d increases at constant N, o in-

creases. If d increases more, the number of occupied
subbands goes from N to N+1, which leads to a discon-
tinuous decrease in o., but this discontinuity is no larger
than the dispersion of the experimental data.

Let us evaluate cr for a semiconducting film for which
N =1; then k ~

=2znd, where n is the density of carriers
and we recover the well-known result o.—d . In the
other extreme case N&)1, valid for metallic films, we
would obtain

109

108

o.—d 1— 6 1

(3 5) 1/3
(14) 10'

10
10 20 4 0 100 200

d (i1)
FIG. 1. Low-temperature inverse residual resistivity cr(d)

=[p(d) —p(~)] ' as a function of the film thickness d for
two sets of samples. Points indicate films obtained (as ex-
plained in Ref. 19) by solid-phase epitaxy, while crosses refer
to films realized by codeposition of Co and Si (see Ref. 15).
The solid line is the best fit between data and theory.

This last expression, for 10 & d & 200 A and n —3 x 1022

cm, is equivalent to o.-d '. In conclusion, the limit-
ing expression (13) of cr shows that o.-d' with a de-
creasing from 6 when N =1 to 2. 1 when N &) 1.

We are now able to compare these limiting results
with the experimental law cr d-found for CoSi2 and
reported in Fig. 1, in the range 10& d &200 A. The ex-
ponent a=2.3 is well inside the two theoretical limits:
a;„=2.1 and a,„=6.It indicates that N is obviously
higher than 1 but not high enough for expression (14) to
fit the data for CoSi2. However, these limits were ob-
tained with the initial assumption ski «1 which leads to
a dependence of o. on d that is independent of the corre-
lation length g. In order to check the influence of g on a
we return to the exact Eqs. (10) and (11) and, at the same time, we will consider the magnitude of the conductivity.

Inliuence of X and magnitude of cr.—In order to proceed we specify the function G occurring in the expression (8) of
the autocorrelation function. We make the same choice as in Ref. 6, often used in semiconductors:
G(p/g) =exp( —p /g ). The matrix elements D,„defined by Eq. (12) are easily expressed:

N

D» = —,
'

g v k„8',
, ,k„gp expt, —

—,
'

g (k, +k„)lIo(—,
'

g k„k„)—v' k, expl ——,
'

g (k„+k,)]Ii(—,
' ( k,k, ) . (15)

@=1

Io(x) and Ii (x) are modified Bessel functions.
By numerical computation we get the inverse matrix

D and introduce it into Eq. (10) for o. Finally, we
find the following: (i) At fixed g the ratio s =log(o/cro)/
log(d/do) is roughly constant for the entire range
10 & d & 200 A. (ii) s is practically independent of g in
the range 0 & g & k i

'. We already knew that this was
exact for g«k i

' with s equal to 2.3; the numerical cal-
culations show that it remains true until (=ki . (iii)
For g»ki ', s becomes lower than 2.3 and we cannot
expect to fit the experimental data on CoSi2. In con-
clusion, the experimental variation of o. vs d in CoSi2, as
presented in Fig. 1, is in good agreement with the limit-
ing law (13).

We continue with this limiting law to check the mag-
nitude of cr From Eq. (.13) and the data of Fig. 1, we

t
ean only determine the product 5 g F(0). The value of

F(0) depends on the choice of the function G. If we
take G(p/g) =exp( —p /g ), we get F(0) =rr. If we
had chosen G(p/g) =exp( —p/(), we would have ob-
tained F(0) =2'. Other trial functions of physical in-
terest give F(0) =Pm, where P is a factor of several times
unity. This does not change the magnitude of o- drasti-
cally. Thus, we proceed with the Prange-Nee model and
we recall that a condition for the validity of Eq. (13) is

g & k i ', where k i
' does not exceed a few angstroms.

This value is very low: On this point, it is worthwhile to
notice that the two kinds of samples used in the experi-
ments, the results of which are reported in Fig. 1, diAer
strongly in their long-range roughness (see details in

Ref. 19), without measurable influence on conductivity.
The results on CoSi2 reported in Ref. 14 suggest that the
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surface profile is atomically rough, which is consistent
with (=2 A. Then, from the magnitude of cr, we infer
that d, =4 A; this value is almost the same as that found
in Ref. 14, where the authors believe that the free sur-
face could have "a rms roughness amplitude perhaps as
large as 5 nm. " Finally, in CoSi2 films, for the thickness
between 10 and 200 A, expression (13) correctly predicts
the variation of o. vs d; physically reasonable values of
surface roughness parameters such as (= 2 A. and d = 3
A give a correct order of magnitude for cr.

We stress in closing that in order to study the conduc-
tivity of a metallic film as a function of its thickness d, it
su%ces to combine the ideas of Prange and Nee on sur-
face roughness and a complete treatment of the system
of subbands occupied by carriers. In the limit of very
small correlation length, a law of variation of o. vs d is
obtained for an arbitrary roughness description and
without any adjustable parameters. This theory fits
quite well the low-temperature conductivity measure-
ments on CoSi2 films; moreover, the surface roughness
parameters recently estimated from electron microscopy
allow prediction of the correct order of magnitude of the
conductivity limited by surface scattering.
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J. Lajzerowicz, J. C. Pfister, R. Rammal, R. Romestain,
and E. Rosencher for stimulating discussions. Labora-
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des Solides de l'Ecole Normale Superieure are labora-
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