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Unitarity Constraints on Heavy Higgs Bosons
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We calculate the complete set of O(GFMtt) corrections to the elastic scattering of longitudinally po-
larized Wbosons in the limit s, MH))M~, for any value of s/MH2. For any Higgs-boson mass such that
MH »M~, there exists a critical energy above which partial-wave unitarity is violated and the one-loop
correction to the J=0 partial wave is large, indicating the breakdown of perturbation theory.

PACS numbers: 14.80.Gt

The standard SU(2)zU(1) model predicts the ex-
istence of an undiscovered neutral scalar H, the Higgs
boson. The Higgs boson (or some similar object) is

necessary to break the gauge symmetry and generate the
masses of the W and Z gauge bosons. The mass of the
Higgs boson is not, however, predicted by the model.
Lee, Quigg, and Thacker ' and Dicus and Mathurz
showed that if the Higgs-boson mass exceeds a critical
value of about 1 TeV, unitarity is violated at tree level
for elastic longitudinal-vector-boson scattering at high
energy, s»M&. They interpreted their results to mean
that if the Higgs-boson mass is greater than this critical
value, then weak interactions will be stronger in the TeV
energy regime and perturbation theory will be no longer
be valid.

In this Letter we present results for the one-loop con-
tribution to the J=O partial-wave amplitude for the re-
action Wz+Wz Wz+Wz in the limit s,MH »M~.
(An analytic expression for the am plitude will be
presented elsewhere. ) We show that when unitarity is

violated, the one-loop contribution is large, confirming
the breakdown of perturbation theory. Furthermore, the
one-loop contribution increases the J=O partial-wave
amplitude, and thus does not help restore unitarity.
However, if we express the amplitude in terms of a run-

ning coupling for s»MH, the one-loop contribution is

negative, suggesting that unitarity may be restored by
loop corrections.

In the regimes s(&MH and s»MH the logarithmic
contributions to the one-loop amplitude for Wz Wz
scattering have been found previously. Our calculation,
however, is valid for all values of s/Mtt. This allows us
to determine the nonlogarithmic contributions to both
the low- and high-energy limits of the amplitude.

For s,MH »M~, the interactions of the Higgs boson
and the longitudinal gauge bosons can be calculated in
an eA'ective theory of interacting scalars. For a scatter-
ing process involving external longitudinally polarized
W's and Z 's, the amplitude can be calculated, to
O(M~/s), by replacing the external gauge bosons with
the corresponding Goldstone bosons of the R~ gauge. '
In the limit MH»M~, interactions of enhanced elec-

troweak strength, O(GFMH), arise only from diagrams
in which the internal particles are also Goldstone bosons
(or the Higgs boson). We use the effective theory to cal-
culate the one-loop corrections to the Wz+Wz elastic
scattering amplitude for s, MH » M~.

In the effective theory, the interactions of the Gold-
stone bosons and the Higgs scalar are given by
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where w — and z are the Goldstone bosons, 0 is the
physical Higgs scalar, vp is the Higgs-field vacuum ex-
pectation value (VEV) which gives rise to spontaneous

symmetry breaking, and k =GFMH/J2 is the bare cou-

pling of the kp theory. (The last two terms, which can-
cel at tree level, yield a tadpole counterterm which en-

sures that the physical Higgs field has zero VEV at one-

loop level. ) This form of the interaction demonstrates
that large MH corresponds to strong interactions be-
tween the longitudinal gauge bosons and the Higgs bo-
son. In the Landau gauge, the Goldstone bosons are
massless and there is no w-W mixing. The Feynman
rules and a description of our renormalization prescrip-
tion for this effective theory are given in Ref. 7.

The tree-level matrix element for Wz+ Wz Wz+ Wz
in the limit s,MH »M~ is easily found in the effective
theory, '

Atp(Wz Wz Wz+Wz )

= —J2GFMH + +2
s —MH

(2)

GFMH MH2+
8tr J2 s —MH

MH
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S
E.
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The tree-level contribution to the J=0 partial wave, ap,
is then found from Eq. (2) to be'

r p

ap
—= „' dtup(Wz+W; —W,+W; )16zs
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Quite general considerations of elastic unitarity re-
quire that the J=O partial wave ao satisfy

unless we include the width. The inclusion of the width
via

~
ao(WrW.L 8'r. WL ) I

& 1 (4)
1 1

s —
Myg s —Myg+iM~I ~

Hence, requiring that ao respect elastic unitarity, Lee,
Quigg, and Thacker ' obtained the bound

M~ & 4~Ji/GF- (1.2 T—ev) '. (6)

This bound may be improved ' to Mrr & 8rr J2/3GF
= (1 TeV) by considering elastic scattering of the state
(2WL+WL +Zr. Zr +HH)/JS.

In similar spirit, we can find the tree-level contribution
to the J=0 partial wave in the low-energy limit s«M~,

I ao (WrWrW. r.Wi. ) I .GFs/16rr J2, s «Mrr . (7)

Note that this amplitude grows linearly with s. This can
be understood in terms of a low-energy effective theory
which describes the Goldstone-boson interactions in
terms of derivative couplings. By requiring

~ ao ~
& 1,

we find a critical energy scale

s, =—16rrJ2/GF = (2.5 TeV)

Chanowitz and Gaillard refined this to s, =8rrJ2/GF
=(1.7 TeV) by considering elastic scattering of the
state (2 Wr.

+
WL +ZL ZL )/ J6. They concluded that for a

very massive Higgs boson, perturbation theory breaks
down for s &s, .

It is straightforward to extend these considerations to
include the one-loop corrections in the limit s,M~ &&M~.
We expand ao in a perturbation series in 1, =GFMrr/ J2,

ao=ao+kao+X ao+

Note that ao, ao, etc. , are themselves of O(k). The re-
quirement of elastic unitarity is then, to O(k ),

W,'—= [ao /+~
Re(ao )Re(ao ) + Im(ao )Im(ao )

I ~o I

(10)

It is this condition which we impose on the O'L O'L

scattering amplitude. For a fixed Higgs-boson mass, we
then find a critical energy scale s, at which Eq. (10) is
violated. At energies above s„perturbation theory is not
expected to be valid. This is a conservative estimate:
The perturbation expansion apparently begins to fail for
smaller values of s.

At energies far above and far below the Higgs-boson
pole, we may neglect the width of the Higgs boson and
ao is real. At the pole, however, the amplitude is infinite

At energies far above the Higgs pole, s ))M~, the
lowest-order contribution to the J=O partial wave ao ap-
proaches a constant,

6 M
~ ao (Wr Wr WL+Wr )~, s&&Mrr . (5)

4~4~
'

corresponds to summing all orders of perturbation theory
for the imaginary part of the s-channel Higgs-boson
self-energy diagram. Since we are calculating to only
one-1oop level for the other diagrams, this prescription is
not entirely consistent. Including a finite width in the
manner of Eq. (11) spoils the perturbation expansion in
X of Eq. (9). When we include a width, we take ao to be
the tree-level contribution with the replacement of Eq.
(11), while ao is the sum of all the one-loop contribu-
tions (except for the imaginary part of the Higgs-boson
self-energy diagram, which is already included in the
width), also with the replacement of Eq. (11). For a
heavy Higgs boson, M&=1 TeV, the width is large and
the eAects of a finite width are significant even away
from the pole. We will present our results with and
without the effects of a finite width. The inclusion of a
finite width yields imaginary parts for a[] and ao, which
we include in Eq. (10). However, we do not include the
imaginary part of ao that arises from the loop integra-
tions. The eA'ects of this term depend on the inclusion of
the width in ao [see Eq. (10)], so we do not consider
them reliable.

In Fig. 1 we show the J=O partial wave as a function
of Ws for Mrr =1 TeV. The solid curves correspond to

~ ao ~
with and without the width included in the Higgs-

boson s-channel propagator. The dashed curves are for
Ao, also with and without the width. Note that the in-
clusion of the width restores unitarity near resonance
(although the one-loop-corrected amplitude violates uni-
tarity slightly), but does not affect the high-energy be-
havior of the amplitude. The inclusion of the width does
affect the low-energy behavior, however, which is given
correctly by the zero-width amplitude. Although the
tree-level amplitude approaches a constant for s»Mrr,
the one-loop-corrected amplitude increases with energy,
violating unitarity at js, =3 TeV (ignoring the small
violation near the pole). The one-loop correction is quite
significant above the pole, at least a 50% increase in the
amplitude, while below the pole it is more modest.

In Fig. 2 we show the same curves for M~ = 1234
GeV, which is the mass for which unitarity is saturated
at high energy at tree level [see Eq. (6)]. This is seen in
the tree-level curves which approach unity asymptotical-
ly at high energies. (The curves approach from below, in
contrast with Fig. 6 of Ref. 1.) The one-loop-corrected
amplitude violates unitarity for all energies above the
pole.

The solid curve in Fig. 3 shows the energy at which
unitarity is violated at one-loop level [see Eq. (10)], as a
function of the Higgs-boson mass. For small Higgs-
boson masses (Mrr «1 TeV) the critical energy is ap-
parently very large, increasing rapidly with decreasing
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and k =GFMH/J2, as usual. We may regard Eq. (14) as an expansion in powers of X(s). We can determine the energy
at which unitarity is violated at tree level by requiring X(s)/4rr & 1. This yields the dot-dashed curve in Fig. 3. Sum-
ming the logarithms dramatically reduces the critical energy for small Higgs-boson masses (MH ~ 1 TeV). However,
when X(s)/4' =1, the second term in the square brackets of Eq. (14) is —1.9, so perturbation theory is apparently not
a reliable guide to the onset of unitarity violation in this regime. The one-loop correction is again large when the tree-
level amplitude violates unitarity, although now it is of the opposite sign, suggesting that loop corrections could poten-
tially restore unitarity for light Higgs bosons.
At low energies, s «MH, the amplitude can again be simplified. We find, to O(k ),

Re[W(W, W, -rV, W, )]=2) ~, +, , —++ + —u X st 5s
6 6

ln + + ln
0 st 5t 2 Ma

s 6 6 —t

2

+ ln
2

n
MH 9~+

u, 2J
4(s'+r') ——u'

9 9 )J
(16)

The logarithmic terms agree with those of Cheyette and Gaillard who calculated the scattering amplitude in a O(4)
nonlinear o. model. The nonlogarithmic terms cannot be obtained from this approach, however. The low-energy contri-
bution to the J=O partial wave is thus

r

Xs X s 20 H 12m

16rrMH 8' MH 9 . s, ~3

Note that X/MH =GF/J2, so the expansion parameter is

GFs, rather than X-GFMH. This is a consequence of
the derivative couplings of the Goldstone bosons. Since
s(&MH, the one-loop correction to the amplitude is

much smaller below the Higgs-boson pole than above it,
as shown in Figs. 1 and 2. The low-energy amplitude de-
pends only logarithmically on the Higgs-boson mass, so
the energy at which unitarity is violated at one-loop lev-

I
I I 1 I

2441
108

(17)

t
el, for MH )) 1 TeV, is roughly independent of the
Higgs-boson mass. However, the low-energy approxima-
tion [Eq. (17)] yields a critical energy which agrees
(within 20%) with that of the exact calculation only for
MH & 4 TeV. The one-loop correction significantly
reduces the energy at which unitarity is violated for a
very massive Higgs boson, from 2.5 TeV [see Eq. (8)] to
about 1.4 TeV. The one-loop correction is very large at
Js =1.4 TeV, more than doubling the three-level ampli-
tude.

In conclusion, we have found that for the process
8 L+O'L 8'I+WL there is some energy at which uni-
tarity is violated for all Higgs-boson masses for
MH»M~. When this occurs, the O(GFMH) one-loop
corrections to the amplitude are large indicating that
perturbation theory breaks down.

We are grateful for conversations with W. Marciano
and H. Georgi. This work was supported by the U.S.
DOE under Contract No. DE-AC02-76CH00016.
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FIG. 3. Critical energy scale at which unitarity [Eq. (10)] is
violated. The solid curve is the one-loop result, the dashed
curve is the high-energy approximation (s»MH), and the
dot-dashed curve is the result of setting A. (s)/4+ =1.
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