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In the attractive Hubbard model (and some extended versions of it), the ground state is proved to have
spin angular momentum S=O for every (even) electron filling. In the repulsive case, and with a bipar-
tite lattice and a half-filled band, the ground state has S= —,
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number of sites in the 8 (4) sublattice. In both cases the ground state is unique. The second theorem
confirms an old, unproved conjecture in the
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able example of itinerant-electron ferromagnetism. The theorems hold in all dimensions without even
the rIecessity of a periodic lattice structure.

PACS numbers: 75.10.Lp, 71.20.Ad, 74.65.+n
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with the following notation. The operators c 1 and c
~

and their adjoints c„satisfy the usual fermion anticom-
mutation relations (c, , cy,}=6 y8, and lc, ci„1 =0.
The hopping matrix elements t„~ are required to be real
and satisfy t~y =ty~, but no other a priori assumption is
made about them (e.g. , the condition t„,=-0 is not as-
sumed, which means that an x-dependent single-particle
poteritial g„ t „n, is allowed). The reality of the t y's
is consistent with their interpretation as overiap matrix
elements of real operators in real, localized orbitals. The

The importance of the Hubbard model of itinerant
electrons is increasingly being appreciated. Because of
the model's subtlety, rigorous results and exact solutions
are clearly useful bench marks, but these are rare. Two
theorems about the ground states are stated and proved
here. Parts of them are resolutions of old conjectures
while other parts are new. In particular, the assertion
that certain versions of the model show ferromagnetic
behavior for the half-filled band is, I believe, new and
yields the first provable example of itinerant-electron fer-
romagnetism with finite forces and without ad hoc as-
sumptions.

After some preliminary definitions, the two theorems
are stated. Each is followed by some remarks about
their significance. Finally, the proofs are given. The
proofs utilize a new kind of reAection positivity which
does not involve the usual spatial rejections but rather
rejections in spin space. In fact, spatial symmetry plays
no role whatsoever and therefore the theorems apply in

the widest generality to any collection of sites; all dimen-
sions and topologies are included. The Hubbard model
is not known to satisfy any kind of spatial reflection posi-
tivity or infrared bounds and this unfortunate fact has
prevented the application of the usuai proof tech-
niques' for establishing the existence of long-range or-
der in periodic lattices.

The Hubbard model on a finite lattice A is defined by
the Hamiltonian

H=g g t„c.'.c,.+ g U, n, ,n„, ,

number operators are n =c„~„„while U is the on-site
energy which, for theorem 1, is allowed to depend on the
site x. The word "1attice" is certainly a misnomer be-
cause no particular topology (i.e., periodicity or dimen-
sionality) is assumed; the generality assumed here is that
A is merely a collection of sites. The number of these
sites is denoted by I A I. There is said to be a bond be-
tween sites x and y if t ~ ~0, and A is said to be connect-
ed if there is a connected path of bonds between every
pair of sites. Obviously it is no loss in generality to as-
sume that A is connected, and this wi/1 always be done
here. Finally, A is said to be bipartite if the sites of A
can be divided into two disjoint sets 2 and 8 such that
i,J =0 whenever x E A and y C A or x & 8 and y E B.
The bipartite condition is really an assertion about the
t„~'s and not about A, but the terminology is convention-
al; it implies, in particular, that t-„=0 for each x C A.
The symbols I A I and I 8 I

denote the number of sites in
A and 8 in this case, whence
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number of electrons is denoted by W; necessarily
w«zIAI.

The aim here is to study the ground state (or states if
there is more than one) of H for a given %. Of central
importance is the total spin S which is a conserved quan-
tity. The spin operators are the quadratic operators

S.= —,
' g (n„t —n t)i, S =(S )'= g c.",c.l, (2)

xEA t l

and (S,~) =(S') + —,
' S+S + —,

' S S, with eigen-
vaiues S(S+1).

Theorem 1 (attracti ve case). Assume U~ ~—0 for
every x (but U„ is not necessarily constant) and that N is
even. No extra assumption about A or the t ~'s is made.
Then (a) among the ground states of H there is one with
spin S =0; (b) if U, & 0 for every x, the ground state is
unique (and hence has S=0).

Remarks. {I) The theorem is "o—bvious" if all the
U 's are very large, for then the ground state consists of
paired electrons on W/2 sites of A. In the other extreme
that each U ——0, theorem 1 is also obvious because one
just fills the lowest W/2 levels of the I A
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tian hopping matrix T={t,~}.
(2) Theorem 1 can be considerably generalized to

what is called an extended Hubbard model, and more.
We can add any real operator M to H provided that M
satisfies the following two conditions. (A real operator is
polynomial in the c„'s and c„'s with real coefficients. )
(i) M commutes with the spin operators 5' and S —and
conserves both spin-up and spin-down particle numbers;
(ii) M can be written as Mt+M~ —Mt~. Here Mt
(M ) is real, Hermitian, involves only spin-up (spin-
down) operators, and M" is identical to M~ when the
spins are flipped (i.e., c, t and c„i are interchanged). The
up-down interaction Mt~ can be written as a sum of
terms of the form (in which p merely denotes a summa-
tion index) Mtt =Q„V„t(VJ) in which each V„opera-
tor is real (but not necessarily Hermitian) and involves

only operators for one kind of electron. Again, V„t must
be the spin reflection of V„~ for each p. The necessary
changes in the proof are straightforward (see Ref. 4). It
is also easy to extend the proof to some multiband Hub-
bard models; the details are left to the reader.

Theorem 2 (repulsive case).—Assume U„=U =posi-
tive constant, independent of x. Assume I A

I
is even, A

is bipartite (so that the t,~,
's couple only A and 8) and

I
8

I
~

I
2 I. No other assumption about & or the t„~'s

is made. Let N =
I
A

I
(half-filled band). Then the

ground state of H is unique [apart from the trivial
(2S+ 1)-fold degeneracy] and has spin S = —,

'

Remarks (3) Theo. r—em 2 is considerably more sub-
tle than theorem 1. The assumptions are more stringent.
The theorem has long been assumed to be true in the

I
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= IA I
case ("the half-filled band has spin zero"),

but its proof has been elusive.
(4) The fact that 25 =

I
8

I

—
I
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I
should be no

surprise. In the limit U=O we fill the levels of the ma-
trix T = {t„}andone m., ight hastily conclude that 5 must
be zero in this limit. If so, theorem 2 would be contra-
dicted by a continuity argument with respect to U.
However, the rank of T is at most 2 I A

I
and so T has at

least
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zero eigenvalues. The

remaining eigenvalues of T come in plus-minus pairs, so
that T has at most

I
A

I negative eigenvalues. To
achieve 25 =

I
8

I

—
I
A I, we fill the negative levels

twice with opposite spins and place the remaining elec-
trons in the zero levels with a common spin, say, spin up.
Thus the ground state is degenerate when U=O, but
S = —, ( I 8 I

—
I
8

I ) is among them. Therefore, there is

no contradiction with the continuity argument mentioned
above. If, on the other hand, U is very large we know
from second-order perturbation theory that H is efIec-
tively an isotropic spin- —, Heisenberg antiferromagnet
with Hamiltonian

h = (2/U) gt.', (S„S,, ——,
' ) .

X, 1'

For such models it is also known that the ground state

is unique and has 2S =
I
8 I

—
I
2 I.

(5) It is easy to construct many regular, periodic lat-
tices in every dimension greater than one with

I
8

I
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A

I
. A classic (high-T, superconductor) two-

dimensional example is to start with a square lattice and
then intercalate one site in the middle of each bond. The
original vertices of the squares are A sites (copper) and
the intercalated sites are 8 sites (oxygen). The half-
filled band has three electrons per unit cell and theorem
2 says that then the total net magnetization is S = —,

' (2
—1) = —,

' times the number of unit cells. This was al-

ready observed for this lattice in the large-U limit by
Mattis.

Whether or not this example is physically realizable is
less important than the fact that theorem 2 applied to a
periodic lattice with I 8 I

&
I A

I yields, for the first
time, a natural, provable example of an i ti nerant-
electron model of ferromagnetism Iuse . the word fer-
romagnetism here only in the sense that the spin is ex-
tensive, i.e., it is proportional to the number of particles
(or cells). Spatial ordering is not implied. A more accu-
rate appelation might be unsaturated ferromagnetism.
Still more accurately, ferromagnetism might be the right
word —but technically that word implies a spatial order-
ing that I am not prepared to prove. In one dimension

I 8 I

=
I
A

I by definition and therefore S=0; this con-
clusion coincides with the known result that S is always
zero in one dimension with nearest-neighbor nonpositive
hopping t ~

~ 0 and for any many -body potential.
There is also the example of Thouless and Nagaoka
with N =

I
A

I

—1, U=~, and 2S =
I
A

I

—1, but infinite
potentials are crucial for this example.

(6) Theorem 2 also has some extensions similar to
some of those described in remark (2) above; hole-
particle symmetry is required.

Proof of theorem l.—5 and S' are conserved and I
work in the S'=0 subspace since all competitors have a
representative there. That is to say, each eigenstate with
a given 5 value can (by the well known properties of an-
gular momentum) be rotated in spin space to a state
with S, =0 without changing its energy. Then there are
n =

2 N electrons of each type, spin up and spin down.
Let {y'} be any orthonormal basis for one species of n

spinless fermions; there are

n

of these and I require that they be real (i.e. , each y' is a
real, homogeneous polynomial of order n in the c„'s act-
ing on the vacuum). A ground state ttl can then be writ-
ten as y=g, tiW, iieet'S y~ with W, ti as coefficients. This
8'~ is here viewed as a m&m matrix. Because all
operators and basis vectors are real and because the
Hamiltonian is symmetric between the up and the down
spins, it is obvious that if 8'~ corresponds to a ground
state then so does W~*, =(W ),ti, and hence (by lineari-
ty) so does W+ W and i (W —W ). Thus, for conveni-
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ence, we may henceforth assume W=W (but W,p is not
assumed to be real). The norm of &tI squared is (yI y)
=P pI W,p I

=TrW and I assume that this is unity.
The hopping energy part of (&it I

H
I

&it) is easily found to
be 2 TrK8' where

K.t, =(yp
I gt„,c,'c,

I y &.
X&P

Clearly K is real and symmetric since each t ~ is real.
The on-site energy is given by —P,U, Tr(WL„WL, )
with (L, ),p=(@PI n„ I y'), which is also real and sym-
metric. The total energy is then

Z(W) =(y
I H I ~) =2 TrKW'+QU„Tr(WI. „WI.„), (3)

ther positive nor negative semidefinite, and this contra-
dicts the assertion that the ground state 8'y satisfies
~~ =+'

I w~ I

%'ith 8' given then, consider the Hermitian, positive
semidefinite matrix R—:

I W I

—W which is also a multi-

ple of a ground state and satisfies (4). If Q denotes the
kernel of R, i.e., Q =]vectors V such that RV=Oj, then
the assertion W = +

I
W

I
is implied by the following

statement which I shall prove: Q is either just the zero
vector or else every vector is in Q. Let V be in Q and
take the expectation of (4) in this state V, i.e.,

(V I KR+RK+gU„L„RL„ I
V& =e(V

I R I V&.

and the equation for W corresponding to the eigenvalue
equation Hy =ey, is

KW+WK+gU„L WL, —eW. (4)
X

Now consider the positive semidefinite matrix I WI
defined by I WI =W . Obviously, TrW =TrI WI .
Moreover, in an orthonormal basis (not to be confused
with the y' basis for the electrons) in which the Hermi-
tian m xm matrix W is diagonal, with diagonal elements

w;, the Hermitian matrix
I
W

I
is also diagonal with ele-

ments
I w; I

. In this diagonal basis I compute

TrWL WL„=+w wj I (L ) j I''» Z I
w

I I w, I I (L.);, I'

Since U„»0, I conclude that E(W)) E(I WI) and
therefore that among the ground states there is one
satisfying W=

I
W I

~ 0. This is the "spin-space refiec-
tion positivity" mentioned in the second paragraph.
(This part of the proof is an adaptation of that given in

Ref. 4.) I choose this positive (possibly semidefinite)
matrix 8' and now make the choice that the y 's are the
natural x-space basis for the electrons, i.e., e denotes n

points in A and y'=+„~,c„ I 0). (Some arbitrary con-
vention for the sign of the y"s can be made here. ) Since
W~ 0, it follows that W„)0 for at least one a, for oth-
erwise W vanishes identically. However, the vector &t&'

=yt'S&tII' satisfies (S,~) p'=0 and therefore this
ground state y has a nonzero projection onto the eigen-
space of (S,~) in which 5=0. This would be impossible
if conclusion (a) were false and thus conclusion (a) must
be true.

To prove conclusion (b) I shall prove that necessarily
a Hermitian W satisfies W =

I
W I or W = —

I W
I

for
every ground state when U (0 for every x. This will

prove conclusion (b) for the following reason. If there
were two normalized, Hermitian ground state W's, say
W' and W with W'& ~ W, then for every real con-
stant d, the Hermitian matrix 8"+d8':—W~ is not
zero and defines (after normalization) a ground state, by
virtue of the linearity of the eigenvalue Eq. (4). It is

easy to verify that there must be a d for which Wp is nei-

H =g g txycx~cy U g n~tnx)
o. X,yCA X&A

and with N =g n . The original number operators N
transform as N~ N~=N~ and Nt Nt = IXI —Nt
The original condition N=

I A I becomes Nt =N~. The

Since RV=O and, for all x, U (0 and (V
I L,RL„ I

V)
~ 0 by the positive semidefiniteness of R, I conclude
that (V IL„RL„ I

V) =0 for all x. Since R is positive
semidefinite, I conclude that RL V=0. Thus each L„
maps Q into Q. Now let the matrices in (4) act on V
(without taking expectation values). Since RL, V =0
and RV=0, I conclude that RKV=0. Thus K also maps

Q into Q. As before, let a denote a collection of n points
in A and define L =+,~,L, which is the projector
onto the basis vector p

' in C [with components
(p')~=6„] and which has matrix elements
(L')~q=8, ~8„r,. Note that the L 's commute with each
other and so the ordering of the L„'s is unimportant in

the definition of L . Each L' maps Q into Q because
each L does. Since A is connected by T, it is easy to see
that the a's are connected by K, i.e., for all a and P there
are indices y~, yq, . . . , y„ for some integer p such that the
ordinary (not matrix) product Gt&, =Kt&7, K7 p2 K7 is

not zero. If Q is not just the zero vector and V~O is in Q
then L'V&0 for some fixed choice of a (because g,L is

the identity). Then L'V=zp' for some nonzero con-
stant z and with p being the aforementioned basis vec-

tor. But then the vector F—=LPKI 'K . . L "KL V is in

Q and, in fact, F=zG~,p PIn short, Q contains a com-
plete set of vectors (i.e. , every p ) because Gp, is non-

zero for every P by virtue of the connectivity. Thus
every vector is in Q since Q is a linear space, which im-

plies that W = +
I W I and which, in turn, implies

uniqueness of the ground state. Q.E.D.
Proof of theorem 2.—First make the conventional un-

itary hole-particle transformation for the spin-up elec-
trons followed by a sign change on the 8 sublattice, i.e.,
c,. t e(x)c,

~
and c t e(x)c, t with e(x) = I for

x C A, e(x) = —I for x E B. The spin-down electrons
are unaltered, i.e. , c ~ c ~. Then n„t 1 —n„t and
the transformed H is H+UN~ with
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spin operators (2) become the pseudo s-pin operators

5'= —,'-(IAI —
Wl —lV1), 5'=- g e(x)c„tc„l,

and 5 (5') + —,
' 5,5 + —5 5—:(5) . The 5

operators commute with H, but so do the spin operators
5 given in (2). The 5 operators are the transforms of
the pseudo-spin operators in the original variables and
are of no special physical interest. The S operators are
the ones of interest as far as 0 is concerned.

As before, I can work in the N; =i+I =
I
A I/2 sub-

space, which implies that Wt =JVi, =
I
A

I l2. The unique-
ness part of theorem 2 is then a consequence of con-
cluston (b) of thcorctn I, which also states that the
unique ground state e of 0 has S=0. This last fact i of
secondary importance. The real problem is to prove that
25 =

I 8
I

—
I
2 I. The shortest proof is to return to H

and the 5"=0 subspace (in the original variables). For
each U) 0 the ground state til(U) is nondegenerate as
has been shown and I want to prove that 2S
=

I
8

I

—
I
4 I. The nondegeneracy of the ground state

for all U&0 implies that the S of this unique ground
state must be independent of U, for otherwise continuity
in U would imply a degeneracy for some valu of U & 0.
Ho~ever, when U is very large, H, as stated before, is
equivalent (to leading order in U) to h, the Heisenberg
antiferromagnetic Hamiltonian defined in remark (4).
As stated there, h also has a unique ground state (for
5' =0) and this state has 25 =

I
8 I

—
I
2 I. The unique-

ness property of h is crucial for it implies a gap (however
small it may be) in the spectrum of h. Thus, for large
enough K~ the S value of the ground state of h is identical

to that of H. Q.E.D.
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