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Metal-Insulator Transition in Kohn-Sham Theory and Quasiparticle Theory
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We investigate the pressure-induced metal-insulator transition of silicon in the diamond structure.
Quasiparticle theory (QPT) calculations are performed within the GW approximation, and Kohn-Sham
theory (KST) results are obtained by using an exchange-correlation potential derived from the GW self-
energy operator, not using the common local-density approximation (LDA). In both KST and the LDA
metallization occurs at a much larger volume than in QPT. These results suggest that the metallization
point and Fermi surface of the Kohn-Sham electrons are not necessarily those of the real system.

PACS numbers: 71.30.+h, 71.25.Rk, 71.45.Gm

Density-functional theory' (DFT), though widely used
in so-called "electronic structure" calculations, is in fact
a theory of the electronic ground state: It is formulated
to reproduce the ground-state electron density and total
energy. However, all practical implementations of DFT
use the Kohn-Sham theory (KST) in which a
Schrodinger equation for an eAective system of nonin-
teracting electrons is solved. It is interesting to ask to
what extent the resulting one-electron energies agree
with the excited-state energies of the system calculated
within quasiparticle theory (QPT).

Something is known about this already. First, the
highest occupied KST eigenvalue is known to equal the
true ionization potential of the system. For infinite
systems, this is the chemical potential p. Second, the
minimum band gap is not equal to the KST minimum

gap (the gap in the KST one-electron band structure).
In the bulk semiconductors Si, GaAs, A1As, and dia-
mond their difference (the discontinuity 6 in the
exchange-correlation potential on addition of one elec-
tron ) is a significant fraction of the band gap.

Perhaps the most fundamental question about the ex-
cited electronic states of a solid is whether the solid is a
metal or an insulator. It might be conjectured that the
Kohn-Sham electrons in exact KST will become metallic
at the same volume as the real solid, and even that they
will have the same Fermi surface as the real system. A
typical argument might run as follows. When a metallic
system is subjected to a static perturbation the induced
charge density exhibits Friedel oscillations whose form is
characteristic of the quasiparticle Fermi surface. As
exact DFT must give the correct density response to a
static perturbation, it might be thought that the Kohn-
Sham Fermi surface is the same as the quasiparticle Fer-
mi surface. However, these arguments are invariably
based on the linear response theory of the Kohn-Sham
electrons and the real system, and can be seen to break
down in the following way. The density response func-
tion of the system, g, to a static additional external po-
tential, BV„-,t, is certainly a quantity that can be calculat-
ed using DFT, since the induced electron density, 8n,
must be reproduced. However, it is not the same as the

density response function of the fictitious system of
noninteracting electrons (the Kohn-Sham electrons).
The former is given by' 6'n =gBV,„t, while the latter is
given by Bn =gKsTBV, p, where V,p is the Kohn-Sham
eITective potential, which includes the Hartree and
exchange-correlation potentials. Using DFT one can
show that g and @psT are related by' '

Z (I LKsTv ZKsT+xc) ZKsT r

where v is the Coulomb interaction 1/(r —r') and K„, is
the "exchange-correlation kernel" BV„,(r')/8n(r). It is
the presence of this last term, K„, which causes the ar-
gument to break down. Since it is known that V„, is a
highly nonanalytic functional of the electron density (for
example, V„, has a discontinuity upon addition of an
electron to a semiconductor') the relationship between g
arid gKsT may not be simple. In particular, it cannot be
assumed that g will be metallic [g(q, q, vo =0) tending to
a constant as the wave vector q 0] merely because
gKsT is metallic. In fact, the possibility of nonanalytici-
ties in the denominator means that g may be insulator-
like (tending to zero like q as q~ 0) at the same time
that gKsT is metallic.

The possibility is supported by recent work on two
models of interacting electron systems. Schonhammer
and Gunnarsson' have shown that, in a weakly correlat-
ed two-dimensional Hubbard model, the KST and QPT
Fermi surfaces are diA'erent. Also, a metal-insulator
transition in a model "cubic electron gas" was shown to
be absent from the corresponding Hartree-Fock and
exchange-only DFT's. ' Of course, the KST and QPT
transitions may coincide in particular systems. For ex-
ample, a study' of a model one-dimensional semicon-
ductor using a two-plane-wave basis set showed that
within these approximations the metallization transition
was at the same point in KST and QPT. Also, the KST
and QPT Fermi surfaces of jellium can be shown to be
identical. '

To various degrees, the four models mentioned above
are all artificial. It remains to be seen whether the Fer-
mi surfaces of real materials are given correctly by KST.
Of the four models, jellium is the closest to a real ma-
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terial, and so it might be expected that little or no
diA'erence would exist between KST and QPT Fermi sur-
faces of nearly-free-electron-like materials. If this is so,
KST can still be used to calculate reasonably accurate
Fermi surfaces for a variety of real systems.

In this work we investigate whether KST can distin-
guish between a metal and an insulator in a realistic sys-
tem. We do this by reducing the volume of silicon in the
diamond structure until it becomes a metal. We have
performed calculations for three diA'erent unit-cell
volumes: V/Vp=1. 00, 0.90, and 0.78, where Vp is the
equilibrium volume at zero pressure. KST calculations
using the local-density approximation (LDA) for ex-
change and correlation' at a large number of volumes
indicate that the LDA band gap becomes zero at
V/ Vp =0.78. The top of the valence band is at I at each
of the volumes studied. The bottom of the conduction
band is on the line I -4 at 0.84X at the equilibrium
volume V/Vp =1.00, and it moves only slightly to 0.88X
when the volume is reduced to V/ Vp =0.78.

Our approach is to perform a calculation of the elec-
tronic structure of the systems using computational
many-body theory, and then calculate a KST exchange-
correlation potential. We first calculate the self-energy
Z(r, r', ro) in the GR'approximation'

x G(r, r', co+ co')de', (2)

where the Green's function G is approximated by its
LDA counterpart, the screened Coulomb interaction 8'
is obtained within the random-phase approximation from
LDA calculations, and 6 is an infinitesimal. We then
calculate the quasiparticle energies (the energy required
to add an electron or hole to the system) by solving the
quasiparticle equation

[ ——,
' & + V„,(r)+ VH(r) —E;]y;(r)

+ J Z(r, r', E;)y;(r')d r'=0. (3)

To solve this equation we use first-order perturbation
theory in Z(E) —V„, , starting from the LDA wave
functions and energies, which we know to be well con-
verged because of the consistently small size of the
second-order term in test calculations, indicating the
closeness of the quasiparticle and LDA wave functions.
We also use Z to calculate the KST exchange-correlation
potential V„(r) using the exact relationship

1mJI [G~sT(co) [Z(co) —V„[.G(co)],=, de =0, (4)

in which G and Gz&T are approximated by the LDA
Green's function and [],=, denotes matrix multiplica-
tion inside the brackets with the r=r' matrix element
then taken. The KST eigenvalues which would be ob-
tained if this V„, were used instead of the LDA are then

calculated using first-order perturbation theory, this time
in V„,—V„, . [The discrepancy between the LDA and
QPT gaps is of little importance in calculating V„,: Even
in the extreme case of V/ Vp =0.78 we find that
artificially increasing the LDA band gap from zero to its
QPT value by adding a constant to all the conduction-
band energies in G in Eq. (4) alters the KST band gap
by less than 0. 1 eV.] The basic technique of the calcula-
tions is similar to that of Ref. 6, although several techni-
cal improvements have been made. ' The LDA calcula-
tions used about 250 plane waves and sixty special k
points to obtain a converged potential, while the calcula-
tions of the self-energy operators and exchange-cor-
relation potentials were done using 169 plane waves and
six special points.

We chose to study silicon because it is convenient for
our pseudopotential techniques and is known to be a ma-
terial for which the GR' approximation yields an accu-
rate band structure. Real silicon undergoes a structural
phase transition to the P-tin structure at a volume of ap-
proximately' V/Vp =0.91, and so the transition that we
are studying would not be seen. However, our system is
one of real atoms interacting in a realistic manner, and
the transition we study is typical of "electronic' rnetalli-
zation transitions. The fact that the existence of a
lower-energy structure prevents the metal-insulator tran-
sition that we have studied from being observed experi-
mentally is of little importance for our purposes, and has
no eAect on the reliability of our approximations. Other
materials, less suitable for our methods, may undergo
metallization transitions within a single structure. For
example, fcc xenon has been studied experimentally and
theoretically.

Our calculations are not exact solutions of the many-
body problem, and we must ask to what extent the ap-
proximations made inAuence the results. Various ap-
proximations have been mentioned earlier in this Letter,
but we have concluded that their eA'ects on the results
are small. However, we have not discussed the validity
of the central approximation: the 68'approximation for
the self-energy. It is known that the 68' approximation
gives an excellent description of the excitation energies
of many semiconductors with a wide range of equilibri-
um volumes, including silicon, and also of covalent and
metallic solids. ' ' It is therefore reasonable to suppose
that the 68' description of silicon at a volume of
V/ Vp =0.78 is as good as that at V/ Vp = 1.00, since both
more and less metallic materials are described well.
Thus we conclude that our calculated self-energies de-
scribe the electronic properties of a system very like sil-
icon. (Although the eAects of excitons and of the forma-
tion of electron-hole droplets on the transition are not
included in the 68' approximation, these are important
on the scale of 0. 1 eV considered here. ) Furthermore,
one can view the use of the 68' approximation as just a
way of calculating a realistic self-energy. The KST

1170



VOLUME 62, NUMBER 10 PHYSICAL REVIEW LETTERS 6 MARCH 1989

1.5 . .

1.0 .
bQ

0.5 .

g 0.0.—

-0.5
0.8 0.9

V)Vo

xpt.

1.0 1.1

5.0

bQ

4 0

3.5
4

3.0

LDA

I . ~ ~ ~ I

0.8 0.9
volvo

KST

1.0 1.1

FIG. 1. The calculated minimum band gap of silicon in the
diamond structure, plotted against the unit-cell volume. The
gaps were calculated using (i) the LDA, (ii) quasiparticle
theory (GW), and (iii) "accurate" Kohn-Sham theory (KST).
The points are joined to guide the eye. The open circle and
dashed lines show the experimental minimum band gap and
the experimental values of its volume dependence (Ref. 23) at
equilibrium.

exchange-correlation potential is obtained directly from
the self-energy via Eq. (4), and thus our conclusion that
the KST and QPT Fermi surfaces are different is in-
dependent of our use of the G8' approximation. We
have tried to use a self-energy containing a realistic
description of the electron-electron interaction in a solid
so that the size of the effects that we calculate is relevant
for real materials.

The dependence of the minimum band gap in each of
the three types of calculation of the unit-cell is summa-
rized in Fig. 1. As was already known, at the equilibri-
um volume the quasiparticle band gap (which agrees
with the measured band gap to within about 0. 1 eV) is
about 100% larger than the LDA band gap, while the
KST band gap is very close to the LDA gap (reflecting
the remarkable similarity between these two potentials).
As the volume is reduced, the LDA, KST, and QPT
minimum gaps all decrease, but at approximately the
same rate. At smaller volumes, the curves remain almost
parallel. We therefore conclude that the volume at
which the band gap of the noninteracting electrons in
KST becomes zero is quite different from the volume at
which the actual (QPT) metallization transition occurs,
though it is quite close to the "metallization" volume

FIG. 2. The calculated direct band gaps of silicon in the
diamond structure at X, plotted against the unit-cell volume.
The gaps were calculated using (i) the LDA, (ii) quasiparticle
theory (GW), and (iii) "accurate" Kohn-Sham theory (KST).
The points are joined to guide the eye. The open circle shows
the experimental direct band gap.

given by the LDA. The respective volumes are given in
Table I. Figure 2 shows the direct gap at X, where again
the KST gap error remains roughly constant as the
volume is reduced.

It has been observed before that LDA pressure
dependences of band gaps are substantially more accu-
rate than the band gaps themselves. This is confirmed
by our results. The volume derivatives of the band gaps,
which have been calculated from a quadratic fit and con-
verted to pressure derivatives by use of the experimental
bulk modulus (0.988 Mbar), are given in Table II.
The pressure derivatives are in agreement with experi-
ment. (Because small differences are involved, the nu-
merical uncertainty in the LDA and G8' derivatives is
about ~0.3 ev/Mbar. More accurate results, in the
LDA only, are available elsewhere. The KST pressure
derivatives are not given, since the numerical uncertainty
in these differences is large. )

In summary, we have shown that the metallization
volume of silicon in the diamond structure is substantial-
ly different in Kohn-Sham theory from its true quasi-
particle value. B„ the discontinuity in the exchange-
correlation potential on addition of an electron, which is
equal to the inherent KST gap error, remains nonzero
even when the Kohn-Sham gap is zero. This result is not
compatible with the conjecture that the metallization

TABLE I. The "metallization volume", V, of silicon
(defined as the volume at which the band gap vanishes) ex-
pressed as a fraction of the equilibrium volume, Vp, in (i) the
LDA, (ii) quasiparticle theory (G W) and (iii) "accurate"
Kohn-Sham theory.

TABLE II ~ The pressure derivatives of the band gaps of sil-
icon at equilibrium in (i) the LDA, (ii) quasiparticle theory
(GW), and (iii) experiment.

Calculation V /Vp Band gap LDA
dEg/dp (eV/Mbar)

GR' Expt. '

LDA
Quasiparticle theory
Kohn-Sham theory

0.78
0.5'
0.80

Minimum gap
r
A

—1.3
0.5

—0.9

—1.8
0.6

—1.6

—1.6, —1.41 + 0.06, —3.8

' Approximation: extrapolated from the data of Fig. 1. ' Reference 23.
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transition volume in KST is the same as that of the real
system, thereby implying that the real Fermi surface is
not necessarily identical in all respects to that of the
Kohn-Sham electrons.
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