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We introduce a new method for the exact and unified treatment of the Schrodinger equation and the
calculation of the electronic density of states of materials with reduced symmetry (e.g. , surfaces and in-
terfaces) many of which are outside the reach of methods based on Bloch's theorem. This method is
based on a self-consistent equation determining the t matrices of those parts of a system characterized
by semi-infinite periodicity, without recourse to reciprocal space. The method is illustrated through a
calculation of the density of states for bulk Cu and for a (100)/(111) planar Cu interface.

PACS numbers: 71.20.—b

In the calculation of electronic structure and the study
of materials properties, the solution of the Schrodinger
equation corresponding to a periodic potential can be
achieved through the use of Bloch's theorem and the as-
sociated lattice Fourier transforms. This theorem allows
the diagonalization of the Hamiltonian in reciprocal (k)
space, and has led to the development of powerful and
accurate first-principles methods for the calculation of
the band structure, E(k), and related properties of many
materials, particularly metals' and metallic alloys.

The conceptual as well as practical appeal of Bloch's
theorem is so powerful that the theorem has often been
invoked in a somewhat artificial manner to treat materi-
als lacking full translational invariance. As a simple ex-
ample, we may cite the use of periodically repeating su-

percells to treat impurities and grain boundaries. In
spite of the accuracy of the results obtained through the
applications of such methods to specific cases, the use of
artificial boundary conditions in general lacks conceptual
rigor, can become essentially impractical in cases of even
moderate structural complexity (e.g. , a few impurities
near an incoherent interface), and fails to provide well

defined and practical prescriptions for obtaining con-
verged results.

It is the purpose of this Letter to introduce a formal-
ism which greatly alleviates the conceptual and the prac-
tical difficulties in the calculation of the electronic struc-
ture of systems with reduced symmetry, providing a
unified, exact treatment of pure bulk materials and those
containing defects of a local or extended nature, such as
impurities (substitutional or interstitial), and surface and
interface regions (grain boundaries). This formalism is
constructed within multiple-scattering theory (MST) in

real, rather than reciprocal space, and is based on the
fundamental concept of serrti inftnite periodic-ity (SIP),
and the associated removal invariance" property of sys-
tems characterized by SIP. Specifically, this property al-

lows one to replace the use of Bloch's theorem and of lat-
tice Fourier transforms with a self-consistent equation
determining the t matrix and the associated Green's
function of any material with SIP. The power of this
new method is illustrated through the reproduction of ex-
isting results for the density of states (DOS) of bulk ele-
mental Cu, and the calculation of the DOS of a (100)/
(111) Cu interface. Following that, we give a brief dis-
cussion of some of the formal and computation aspects of
this formalism, its advantages and limitations compared
to existing techniques, and our future plans in regard to
code development. A much more detailed discussion
along these lines is reserved for a future publication.

Quite generally, we define "semi-infinite periodicity"
as the periodic repetition of a basic unit along a given
direction. As examples of systems of SIP, we may con-
sider a linear, semi-infinite periodic arrangement of
atoms, and one of the two parts formed upon severing a
periodic material along a cleavage plane. In the first
case the basic repeating unit is an atom, while in the
second one the repeating unit is either an atomic mono-
layer or a set of such layers. Clearly, a broad range of
systems, from periodic bulk materials to twist and tilt
grain boundaries, can be viewed as consisting of parts
characterized by SIP. In fact, this view encompasses all
structures with the exception of those characterized by
structural disorder (amorphous materials), or quasi-
periodicity.

The ensuing MST formalism is based on the following
"removal invariance" property of systems with SIP: The
t matrices of any such system remain invariant (within a
trivial phase factor) when any number of basic scatter
ing units is removed from the free end of the system.
This property gives rise to a self-consistent equation
which allows the determination of the t matrix and the
Green's function in real space.

Within the single-particle approximation, the electron-
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ic structure of an assembly of scatterers can be obtained
from the single-particle Green's function, G(r, r'), which
can be expressed in terms of the complete scattering ma-
trix, T, of the assembly,

Tr.z = g ggzz, ( —Ro, )zz', z,gz, z ( —R)0) .
LlL2 ij

(2)

Here, R„denotes the position of the center cell i, g(R)
is the L representation of the translation operator asso-
ciated with vector R, and zz'z are the site angular
momentum matrix elements of the scattering path opera-
tor between unit cells i and j. The elements zzz are
given in terms of the t matrices, t;, of individual cells and
the intercell free-particle propagator G(R;r) by the in-

verse of the MST matrix

M;r =t; '8;r —G(R;~. ) (l —6';r ) . (3)

It has been shown that Eq. (l) can be written in the
form

G(r, r') =QZz(r;) zPz Zz (r,')
LL'

(4)

where r; =r —R; is confined to cell i and the functions
ZL, SL are appropriately defined regular and irregular
solutions of the Schrodinger equation inside unit cell i,
respectively. In most applications, e.g. , determination of
charge density and the DOS, one is interested only on
the diagonal part of G(r, r) which can be obtained from
the site-diagonal elements, z", alone.

For systems with translational invariance, Eq. (3) can
be transformed to reciprocal space through the use of
Bloch's theorem, and in that form leads to the well-

known secular equation of Korringa, and of Kohn and
Rostoker (KKR) for the calculation of the band struc-
ture of a material. In more general cases of systems
lacking translational invariance and characterized only

by SIP, we introduce a real-space, multiple-scattering-
theory (RS-MST) formalism which can be used in deter-
mining z'r, and hence G(r, r'). This method consists in

treating exactly a cluster of a finite number of cells, a
number of which are bare cells characterized by the indi-
vidual cell t matrices, surrounded by certain "renormal-
ized" cells characterized by t matrices constructed so as
to properly represent the infinite medium surrounding
the cluster of bare cells. These renormalized cells can be
appropriately chosen so that each represents a part of the
system characterized by SIP. The determination of the

G(r, r') =Go(r, r')+„Go(r, r~) T(r~, r2)

XGp(r2, r')d r~ d r2,

with Go(r, r') being the free-particle propagator. By
decomposing the on-the-energy-shell components of T in

the angular momentum (L) representation, L=(l, m),
with T centered at the origin, 0, we have Ti rr = g ggzz, ( —R«)zz', z, (T~)gz,z ( —R&~) .

LlL2 i j
(s)

This equation when solved by iteration or other means
determines T~ for the semi-infinite line. Second, use the
angular momentum representation of the rotation opera-
tions to obtain the t matrix of a semi-infinite line extend-
ing along a diAerent direction. Third, to determine the
renormalized cell t matrix, T2, for a two-dimensional ar-
rangement of atoms, such as a quarter of a monolayer or
half of a monolayer, we set up a matrix M;j for the un-
known T2 and a repeating unit consisting of bare cells
and previously determined renormalized cell t matrices
representing half-lines, insert the inverse M;j into Eq.
(2), and solve the resulting self-consistent equation. Fi-
nally, the renormalized cell t matrix for a three-dimen-
sional semi-infinite periodic arrangement of atoms can be
determined using the same process with an appropriately
chosen cluster of bare cells and renormalized cells repre-
senting semi-infinite parts of lower dimensions. In short,
at each stage of this process, a number of bare cells
along with previously determined renormalized t ma-
trices are used to form the basic iterating unit to obtain a
t matrix for a higher-dimensional arrangement of cells.

We now consider a system, such as one containing a
grain boundary, as consisting of Nb bare cells, described
by individual t matrices, properly surrounded (dressed)
by the N„renormalized cells representing various one-,
two-, or three-dimensional parts characterized by SIP.
The final expression for the Green's function is obtained
by considering Eqs. (3) and (4) in connection with the
N~ bare cells and the N, renormalized cells. It is to be
noted that by changing appropriately the manner in

which the renormalized cells are determined, and the
characteristics of the bare cells, one can treat a wide
spectrum of systems, such as surface relaxation, impuri-
ties with lattice relaxation, etc. , without undue increase
in computational eAort.

As it may have become clear through the foregoing
discussion, the RS-MST method introduced in this
Letter utilizes the properties of SIP allowing for the first
time the treatment of infinite systems without recourse to
Bloch's theorem and lattice Fourier transforms. We
should note that the elimination of reciprocal space from
the formalism has three additional beneficial eA'ects.

First, it eliminates the need for searching for appropriate
grids of points in k space to perform rather cumbersome

renormalized cell t matrices can then be carried out in
an iterative way as follows.

First, determine the renormalized cell t matrix, T~, as-
sociated with a one-dimensional semi-infinite periodic ar-
rangement of atoms, with T i centered at the free end of
the semi-infinite line. Because of the removal invariance
property, we can use Eq. (3) with the unknown T

~

placed at the end of a line of N bare cells, invert the cor-
responding matrix M;~, and insert that inverse, z;j, in Eq.
(2) to obtain a self-consistent equation for T

~

..
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integrals over the first Brillouin zone of a reciprocal lat-
tice. Second, it eliminates the need to set up the so-
called structure constants, replacing them by an easily
constructed input file specifying the coordinates of the
cluster to be used and the appropriate sequence for
determining the renormalized cell t matrices. Finally,
the size of the cluster used is essentially determined by
the convergence of the free-particle propagator indepen-
dently of the number of atoms per unit cell, leading to an
approximately linear relation of the computational time
to the number of atoms per cell in a charge self-con-
sistent calculation, in contrast with the cubic relation for
methods based on reciprocal space. Because of these
eff'ects, no significant increase in computational labor re-
sults when treating fairly complex structures with low

symmetry or with many atoms per unit cell.
An exact application of Eqs. (3) and (5) would involve

infinite-dimensional matrices in I, space. For practical
applications, a truncation in I is necessary, and the con-
vergence with respect to the maximum / used must be
considered [especially for the internal summations in Eq.
(5)]. Clearly, one can always expect these summations
to converge using su%ciently large-size clusters, and
check the convergence through calculations truncated at
diff'erent maximum l's. Our numerical studies indicate
that convergence can be achieved with moderate size
clusters and truncation at relatively small values of l.
Thus, the present method provides a feasible and well-
defined approach for obtaining and checking conver-
gence.

Results of numerical calculations carried out within
the RS MST introduced here are presented in Fig. l. In
this figure, the heavy solid line depicts the DOS for bulk
elemental Cu obtained by Moruzzi, Janak, and Williams
(MJW)' through the familiar method of KKR. The
shaded regions of Fig. 1 represent the local DOS's ob-
tained using the potential functions of MJW at the
center of a bare cluster of 117 sites, 1(a), at the center of
a 117-site cluster whose boundary sites were appropriate-

ly renormalized using the RS-MST method to simulate
the infinite surrounding medium, 1(b), and the DOS at a
(100)/(111) planar interface, 1 (c), respectively. The
bare cluster DOS, shaded region in 1(a), reveals a num-
ber of expected features. It is sharper and narrower than
that corresponding to the bulk material, and provides
only a partial reproduction of the sharp edge of the DOS
of Cu at the top of the d band. By contrast, the RS-
MST calculation, shaded region in 1(b), reproduces
essentially exactly the results of the k-space calculations;
any remaining diff'erences with the exact calculations
could be attributed to the lack of convergence (the RS-
MST calculations were carried out only to l =2 while the
MJW calculations included up to l=4), or to the use of
the atomic-sphere approximation in performing the in-
tegrals of the cell wave functions. Finally, the interface
DOS in 1(c) exhibits an essentially complete loss of
structure and has a somewhat narrower bandwidth than
that of the bulk DOS. The first effect is expected due to
the loss of translational invariance, while the second is a
reflection of the decreased coordination of the site at
which the DOS's were calculated: This site was located
on the (100) side of the interface and had only nine
(rather than twelve) nearest neighbors. It is to be point-
ed out that this last structure cannot be treated properly
within any method relying on reciprocal space (and
Bloch's theorem).

It is to be pointed out that the formalism presented
here provides the answer to a rather long standing prob-
lem in electronic structure calculations, quite concisely
stated by Faulkner: how to modify the boundary condi-
tions on a cluster of free sites to represent properly the
infinite medium surrounding the cluster. With a cluster
of 117 sites this modification is rather small, allowing us
to achieve convergence with a very small value of l
(=2). The same degree of convergence can also be
achieved with small clusters but suf5ciently high values
of l, although it is in general computationally more
dificult to increase the value of l rather than the number

(a)
I

(c)

E

4

O 2

-10 -8 -6 P -2 0 2 4-10-8 -6

E (eV) E (eV)

-2 0 2 4-10 -8 -6 -4 -2 0 2 4

E (eV)

I.IG. 1. Local densities of states of bulk Cu calculated through the KKR method, heavy solid line in all panels, at the center of a
bare 117-site cluster, shaded region in (a), using the RS-MST method, shaded region in (b), an
(111) interface using the RS-MST method, shaded region in (c).
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of sites. Detailed examination of the convergence prop-
erties of the RS-MST method to be reported in a forth-
coming publication indicate strongly the trade oA' which
exists between expansions in real space (number of sites)
and in angular momentum states.

Having illustrated the applicability of our method, it is
fair to point out its disadvantage in comparison to tech-
niques based on Bloch's theorem. Namely, the RS-MST
method does not allow the determination of the disper-
sion relation, E(k), for periodic systems. In addition, as
it is true of all other erst-principle methods, it cannot be
applied to systems with structural disorder of infinite ex-
tent (amorphous materials) or quasicrystals. With the
exception of these cases, this method provides a treat-
ment of the Schrodinger equation with the proper bound-
ary conditions for all other structures. Calculations are
currently under way aimed at examining the rate of con-
vergence with respect to increasing l and/or cluster size,
and at determining optimum dressed cluster arrange-
ments for various structures.

We are grateful to J. W. Garland for helpful discus-
sions, and to D. M. Nicholson for providing us with the

phase shifts for Cu used in these calculations. This work
was partly supported by the U.S. Department of Energy
under Contract No. %-7405-ENG-48 with Lawrence
Livermore National Laboratory.

'V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated
Electronic Properties of Metals (Pergamon, New York, 1978).

-J. S. Faulkner, in Progress in Materials Science, edited by
J. W, Christian, P. Haasen, and T. B. Massalski (Pergamon,
New York, 1982), Nos. 1 and 2, and references therein.

Space limitations prevent the citing of even a representative
list of the vast number of works in the field. An extensive list
of references will be given in forthcoming publications.

4R. K. Nesbet who coined the term "removal invariance"
(private communication).

5M. Danos and L. C. Maximon, J. Math. Phys. 6, 766
(1965).

B. L. Gyorff'y and M. J. Stott, in Band Structure Spectros-
copy of Metals and Alloys, edited by D. J. Fabian and D. M.
Watson (Academic, New York, 1973), p. 385.

7J. Korringa, Physica 13, 392 (1947).
sW. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
9J. S. Faulkner, J. Phys. C 10, 4661 (1977).


