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Fermion Monte Carlo Algorithms and Liquid He
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Variational Monte Carlo and several many-fermion Green's-function Monte Carlo (GFMC) algo-
rithms are used to study the ground state of liquid 'He. We report the first mirror-potential GFMC cal-
culations in a many-fermion problem, comparing them with transient estimation and fixed-node studies
to illustrate the strengths and weaknesses of each. GFMC results with the Aziz HFDHE2 interaction
are in good agreement with experiment, yielding energies within approximately 0.1 K per particle. In
addition, each of these calculations predicts a kinetic energy per particle of between 12 and 12.5 K.

PACS numbers: 67.50.—b, 02.70.+d, 61.20.3a
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The pair interaction v(r; ) is taken to be the HFDHE2
interaction of Aziz et al. ' which for He yields excellent
agreement with experiment. ' Accurate variational cal-
culations yielding a good ground-state trial function are
an essential preliminary to practical and reliable GFMC
calculation. Improved trial wave functions significantly
reduce the statistical error by initiating the iterative cal-
culation nearer the ground state; moreover, an improved
importance function acts to suppress population fluctua-

The structure and properties of bulk liquid He at zero
temperature have been subjects of intense theoretical
and experimental interest in recent years. ' In particu-
lar, accurate first-principles calculation of the macro-
scopic properties of He from microscopic interactions
has long been a goal of condensed-matter theorists. A
simple state-independent interaction provides an accu-
rate description of the Hamiltonian of bulk helium, yet
this interaction is strong enough to produce large corre-
lations between the atoms. Consequently, liquid He
provides an ideal testing ground for diverse many-body
calculational schemes.

Monte Carlo methods are employed to study many-
fermion systems in many areas of physics, from atomic
and condensed matter to nuclear and high-energy phys-
ics. Difhculties associated with the antisymmetric nature
of the fermion wave function are well known and widely
discussed. ' ' ' In straightforward Green's-function
Monte Carlo (GFMC) calculations, the fermion problem
manifests itself as an exponential increase in statistical
error as the calculation proceeds. In this Letter, we

present new results and a detailed comparison of meth-
ods designed to reduce or eliminate this difhculty.

For a nonrelativistic system of % helium atoms in-

teracting via static two-body forces only, the Hamiltoni-
an has the form

tions. A good trial wave function is especially crucial to
a successful attack on the fermion problem.

We have used a trial wave function of the form

PT l//3 det, exp i k; r~ + t/(rtj' )rt,
lwj

(2)

where

l//3 exp ——, P u (r;z ) — P P &(rt; )&(rl~ )rt; ri&
7
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(3)
and

u(r) =u(r) ET''(r)r'. —

This Ansatz includes explicit two- and three-body corre-
lations as well as state-dependent correlations which in-
corporate backflow" eff'ects. The two-body correlation
u(r;~) is an appropriately scaled solution of an Euler-
Lagrange equation obtained from Fermi-hypernetted
chain methods' or the solution of a parametrized two-
body Schrodinger-type equation. ' The triplet correla-
tions are parametrized as

g(r) =exp{—[(r rT)/wT—] '] (5)

and the momentum-dependent correlations are intro-
duced through

r/(r ) =Xtt exp j —[(r —rtt )/wtt ] ] +Xtt /r (6)

The wave function is required to be periodic, so that
all correlations smoothly go to zero at a distance equal to
half the side of the simulation volume, r,„, according to
the replacement

f(r ) f(r ) +f(2r,„—r ) —2f(r,„) .

Since the correlations which minimize the variational en-

ergy in our study are relatively short ranged, this finite-
size adaptation has no real eA'ect on the magnitude of
the correlations.
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TABLE I. Variational parameters optimized for the He
wave function for 54 particles in a periodic box at po =0.273,
where cr=2.556 A.

WT

—1.80 0.66o 0.50a 0.14 0.74o 0.54' 0.15cr

The optimum set of variational parameters obtained
for a system of 54 particles at the experimental equilibri-
um density is given in Table I. Although the functional
forms of the correlation functions are similar to those
used in integral-equation studies, ' there are significant
differences between the optimum parameters obtained
with the two methods. In the Monte Carlo calculations,
no approximations are necessary in evaluating the varia-
tional upper bound, subject to the caveat that the calcu-
lation refers to a finite number of particles with periodic
boundary conditions.

Employing the accurate variational wave function as
an importance function, the Green's-function Monte
Carlo" ' ' method is used to calculate ground-
state properties of the system. The GFMC method is
based upon the fact that the Schrodinger equation in

imaginary time is equivalent to a diffusion equation in
real time. The GFMC algorithm is implemented by
choosing a set of points [RI in configuration space and
iterating the equation

4'"+'(R) =ET) G(R, R')W "(R')dR'.

Although the Green's function is not known analytically,
it can be sampled exactly through the use of an ancillary
random walk. The GFMC method has been applied to
macroscopic bosonic systems, such as liquid He, with
great success. ' ' '

Exact GFMC treatment of fermion systems, however,
has proven to be very elusive. The antisymmetry re-
quirement is a global property that is dificult to incorpo-
rate successfully into the diffusion algorithm, which is lo-
cal in character. The fact that the wave function is not
positive definite introduces a statistical error which
grows exponentially as Eq. (8) is iterated. Fermion algo-
rithms typically introduce two populations, the difference
of which corresponds to the desired wave function:

+ (9)
The various fermion GFMC algorithms can be viewed

in the framework of mirror potentials. ' By introducing
two coupled equations,

[H(R)+c(R)W+(R)]+ (R) =E+ (R), (10a)

[H(R)+c(R)+ (R)]%"+(R)=E++(R), (10b)

and making an appropriate choice of the mirror poten-
tials c(R)+ —(R), it is possible, in principle, to retain
two stable and distinct populations for ++ and + such
that the difference is a solution of the original Schro-

and

QS ~ QA

q s —[(q 2) 2+ (p~B) 2] 1l2

(12)

(13)

wherein WT is the antisymmetric trial wave function of
Eq. (2). The "bosonic" wave function O'T is taken as the
product of the two- and three-body correlations y3 of Eq.
(3) only, and is therefore symmetric. The quantities E*
and p are parameters of the approximate mirror poten-
tial. Although the mirror potential itself is arbitrary, the
use of ~T rather than ~ on the right-hand side of Eq.
(11)gives only an approximate cancellation in Eqs. (10).
In the limit that the antisymmetric trial function +T is
exact, the mirror potential equations yield an exact solu-
tion independent of E* and p.

Table II collects results obtained at the experimental
equilibrium density. Mirror-potential results are pre-
sented along with results of variational, transient esti-
mate, and fixed-node studies. The optimally determined
trial function, as determined by the variational calcula-
tion, has been used in each of the GFMC studies. This
wave function determines the antisymmetric part of the
initial distribution in all cases, the antisymmetric part of
the mirror potential, and the nodal surfaces in the fixed-
node calculation. Calculations to date for the intermedi-
ate choice of mirror potential give energies between
—2.24+ 0.04 and —2.32 ~0.07 K per particle, depend-
ing upon the parameters. This is significantly lower than
the variational result, but not quite as low as the fixed-
node result ( —2.37+'0.01). However, the mirror poten-
tial procedure yields accurate energies without the
necessity of fixing the nodal surface of the wave func
tion; for this reason it should have greater applicability
where the nodal surface is hard or even impossible to

dinger equation. Two very useful methods that were in-
troduced earlier —the fixed-node approximation ' and
transient estimation ' —turn out to be limiting cases of
Eqs. (10). Thegxed-node approximation corresponds to
the limit c(R)~ ee in Eqs. (10), whereby the difi'usion
of the two populations is restricted to two isolated re-
gions in configuration space. This prescription yields an
upper bound to the true ground-state energy, and leads
to the lowest-energy wave function with the same nodes
as the trial function. Alternatively, transient estimation
corresponds to the limit c(R)~ 0 in Eqs. (10) and re-
sults in a series of decreasing upper bounds with ex-
ponentially increasing statistical error. Accurate trial
functions are very important for this method, since the
goal is to achieve convergence to the true ground state
before the growing statistical error dominates.

We report here results with an intermediate choice for
c(R),

[E*—H] e;
c R y+

with
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TABLE II. Results of Monte Carlo calculations for 54 He atoms in a periodic box at pa =0.273, where cr=2.556 A. All ener-
gies are in K per particle.

Method

Variational
GFMC (mirror potential)
GFMC (mirror potential)
GFMC (mirror potential)
GFMC (mirror potential)
GFMC (fixed node)
GFMC (transient estimation)

—2.30
—2.35
—2.40
—2.35

60.0
70.0
70.0
80.0

Energy

—2. 13 ~ 0.02
—2.24 W 0.04
—2.32 W 0.07
—2.27 W 0.03
—2.30 W 0.04
—2.37 ~ 0.01
—2.44+ 0.04

12.22 ~ 0.03
12.33+ 0.14
12.22 W 0.20
12.42 ~ 0.16
12.34+ 0.14
12.28 ~ 0.04
12.40 ~ 0.10

(v)
—14.35 +' 0.02
—14.57+ 0.14
—14.54+' 0.20
—14.69+ 0.16
—14.64+ 0.14
—14.65 +' 0.03
—14.84+ 0.10

specify. Moreover, mirror potentials allow for even more
accurate higher-order treatments. ' The rapid increase
in the statistical error makes it hard to determine if the
transient-estimate calculation has converged to the
ground state; nevertheless, the upper bound of
—2.44+'0.04 K/particle is the lowest obtained to date
and is very close to the experimental equilibrium energy
of —2.47 K/particle.

The kinetic energy (T) and potential energy (V) at
equilibrium density are also given in Table II. In every
case, the kinetic energy per particle is between 12 and
12.5 K, significantly larger than some previous interpre-
tations of experimental data. Details of the calcula-
tions, as well as results for the momentum distribution
and other ground-state properties, will be presented else-
where.

The various GFMC algorithms each require large
amounts of supercomputer resources. More than 30000
configurations were required in transient estimation, yet
Eq. (8) was iterated only 50 times before the statistical
error dominated. In contrast, the stable nature of the
fixed-node calculation allowed more than 1000 iterations
of Eq. (8) with only 500 configurations. The several

mirror-potential calculations employed approximately
400 configurations iterated 500 times.

The equations of state for liquid He as obtained from
the variational treatment and from fixed-node GFMC
are compared with experimental results in Fig. 1, which
we note has a very expanded energy scale. Differences
between the fixed-node and experimental energies are
typically of the order of 0.1 K/particle, similar in magni-
tude to the differences previously found for He with the
HFDHE2 potential. ' The overall agreement with the
experimental equation of state is very encouraging, in the
sense that the differences are small and are similar in

magnitude to a variety of uncertainties in the Hamiltoni-
an and the calculation.

Several uncertainties remain in a comparison of these
results and experiment. Finite-size effects play a role in

the remaining difference, as these calculations were done
for a system of 54 particles with periodic boundary con-
ditions. In order to check the importance of this effect,
variational calculations for up to 186 particles have been
performed. This test indicates that energy differences of
up to approximately 0. 1 K/particle may be attributable
to the finite size of the simulations.
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FIG. 1. Energy per particle vs density for liquid 'He at zero temperature. The dashed lines are fits to the variational and axe
node GFMC calculations, while the solid line gives the experimental equation of state.
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In addition, there are theoretical uncertainties in the
Hamiltonian used for He. Recently, Aziz, McCourt,
and Wong have introduced another two-body interac-
tion which has a somewhat deeper attractive well than
the HFDHE2 potential. Perturbative estimates indicate
that this interaction may provide an additional attraction
of 0.2 K/particle at equilibrium density, thus giving an

energy slightly lower than experiment.
On the other hand, three-body interactions may also

be important at this level of precision. A straightforward
evaluation of the Axilrod-Teller three-body interaction
yields a repulsion of 0.07 K/particle in first-order pertur-
bation theory. Although this triple-dipole interaction is
correct for large interatomic separations, its applicability
at small distances in He has not yet been shown.

Since each of the above efI'ects is of about the same
magnitude, it would be very difficult to determine the
"correct" Hamiltonian of liquid 3He from a calculation
of its bulk ground-state properties. It may prove more
fruitful to study the two- and three-body interactions by
means of first-principles calculations of the atomic sys-
tems.

The overall agreement between theoretical and experi-
mental results is excellent, similar to that obtained previ-
ously for He. The kinetic energy obtained in each of
the calculations is between 12 and 12.5 K per particle,
indicating the importance of the high-momentum tails in

the He ground state and the value of further experimen-
tal and theoretical investigations of the momentum dis-
tribution. The development of exact fermion algorithms
remains one of the outstanding problems in quantum
Monte Carlo studies, and work in this area will be vi-

gorously pursued.
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