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We obtain an exact solution for a relativistic Langmuir wave with nontrivial space and time depen-
dence. We find explosive behavior in the electron density and hence also in the electric field gradient.
Relativistic effects are thus found to be a possible candidate to explain this interesting type of behavior,
recently found in numerical simulations (though it is too early to give a quantitative treatment).

PACS numbers: 52.25.Kn, 52.35.Fp, 52.35.Py

The nonrelativistic problem of nonlinear electron oscil-
lations in a cold plasma was solved by several people in-
dependently some time ago.'™ Here we will refer to the
solution as given in Davidson’s book,* though this Letter
is self-contained. The method of Refs. 3 and 4 was to
transform to Lagrangian coordinates which follow the
fluid motion (for extensions see Ref. 5). Any initial
periodic profile with wavelength 2z/k could lead to a
well defined oscillation, provided that the electric field F
did not exceed a critical value of order mea),%e/ek, where
wpe is the electron plasma frequency. If the critical
value was taken, the density eventually became infinite
at a point. More recently, the present authors were able
to solve the same problem for a warm electron, cold ion
plasma.® The result involved a drastic reduction in the
class of possible initial conditions that would lead to a
coherent oscillation. Thus, addition of even a small elec-
tron temperature constitutes a singular perturbation.
However, the dependence of E.x on the temperature
was found to be weak. Traveling Berstein-Greene-
Kruskal (BGK) modes, which depend on just one vari-
able, x —V't, have also been extensively investigated for
both cases.”"!! Early work by Soviet scientists should
be mentioned in this context. '?

The availability of high-powered lasers and various ac-
celerator concepts based on laser-plasma interaction has
renewed interest in strongly nonlinear waves. In particu-
lar, experimenters wish to know whether wave breaking
is to be expected and, if so, what will be the largest possi-
ble value of E when this happens in a particular experi-
mental setup.'?>”'® Lagrangian methods are sometimes
used in this context.'>-14

In this Letter we give a relativistic treatment of the
cold plasma problem and somewhat unexpectedly find
explosive behavior; that is, for sufficiently long time the
density becomes infinite.

The equations governing a cold, relativistic electron
plasma in which the ions constitute a uniform back-

ground are, in one space dimension,
on/dt+9(nv)/ox =0, n
dpldt=—eE/m, p=P/m=v/(1—v%c?)"?,

d/dt =9/dt +v 8/dx , @)
OE /3t =4rnev , (3)
dE/dx = —4re(n—ny) . 4)

Here the momentum P, density #, and velocity v are all
electron quantities, and #ny is the constant ion density. E
is the electric field intensity. Combining the Maxwell
and Poisson equations, (3) and (4), we obtain

dE/dt =4rngv . (5)

We now introduce Lagrangian coordinates xo,7 which
follow the fluid such that xo=const gives the motion of
one fluid element:

x0=x—j;rv(xo,r)dr, T=t. (6)
The identities
d/dt=0/8t, 8/9x=D ~'8/dxo,

. @)
D=8x/dx0=1+ fo (9v/9x0)dx,

will be needed in what follows. Equation (1) now yields
n{(xo,7) =n(x0,0)/D . ®)
Differentiation of (2), expressed in the new variables, to-
gether with (3) yields
8%p/at’+ wpp/v(1+p?/c?)V2=0. 9)

This equation was first derived by Polovin.'? This is the
equation of a relativistic harmonic oscillator. It is easily
solved to give 7 in terms of p. Integrating once, we ob-
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tain Here E and F are incomplete elliptic integrals, and ¢ is a
=+ _ 2/7.2Y1/211/2 second arbitrary fur}ction of xo.

9p/dt =t wpel2a = (1 +p*/c) 1T, (10) Although a solution to (1)-(4) can now be found for

where a is a function of xo. We now introduce a and r any periodic initial conditions, here we specify them to

through correspond to the conditions chosen for the nonrelativis-

tic case.* The relativistic form is
. —(1+ 2 C2 /12
sinZqg =2 (Atp/e?) s

. an (x0,0) =1+Acos(kxo), A< 1
ri=@@—1)/(a+1), a(0)=zr/2, n(x9,0) =1+ Acos(kxo), ,

to obtain, via a second integration,
wpet=[2(a+1)1'2E (a,r)

—[2/G@+ D12 F(a,r)+¢(xo). (12) | where A is a dimensionless constant. Now ¢(xo) is a
sum of two complete elliptic integrals such that

wper=12(a+ DIE(a,r) —E(1—[2/(a+ D12 [F(a,r) —K()]. (14)

(13)
p(x0,0)=0,

A second step is to use the arguments of the elliptic functions, a and r, as the basic parameters. This leads to an un-
ceremonious elimination of the Lagrangian variables and gives n(x,) in parametric form. Using (8), (13), and (14),
we obtain

nofl £ Al —4rYA2(1 —r2)1V3

= 5
1+Al1—4r%/A(1 —r?)1Y2(1 —sing — A cosa) (1s)
_{a+r)IE,r) —EE)]—U=r)IF(a,r) =K@ B U —risina) 2+ [r2(1 —r2)/21sinQa)
A= : , (16)
2r2sina—1—r2
kx =arcsinl & 2r/A'(1 —r2) 21 £ 2, [A/A'(1 —r2) 21 (1 —sina) , an
wpet =[2/(0 =) 2NE(a,r) —EE)1— U —r)2[Fla,r) —K ()], (18)

A'=wuAlck, 1>A@+A)"?=r=0, a=n1/2.

This is an exact solution in parametric form n=n(a,r), [
x=x(a,r), t =t(a,r), and essentially specified by the di- looking at the weakly relativistic limit, accurate up to

mensionless numbers A and wp/ck. It is of some and including terms of order a),,e/k:Z 2 [Nevertheless,
mathematical interest, being a fully x,¢ dependent solu- for some problems the full solution (15)-(18) would
tion, that the set of equations may not be integrable by have to be used. An example is the beat-wave applica-
inverse scattering. tion for which w,./kc is close to unity; see remarks at
As the integrals E(a,r) and F(a,r) in A are extended end of this Letter.] It should be stressed that, equipped
beyond /2, secular behavior is observed and the denomi- with the exact solution, we can cope with all possible
nator will vanish after finite time (finite «). However, as values of w,./kc, the weakly relativistic limit simply fur-

we are not used to elliptic functions extended beyond nishing an illustration.
7/2, it takes a moments reflection to see this secular be- We revert to Lagrangian variables for this limit. The

havior. The salient features can be seen, for example, by | result is
_ noll +Acos(kxo)] 19)
1+ Acos(kxo) [1 —cos(@pet) — § (Awpe/ke) *opet sin*(kxo)sin(@pet)]

@pe =wpell — 75 (Awpe/kc) *sin?(kxo)] , (20)
kx=kxo+2Asin2(a')pet/2)sin(kxo), t1=0, A< +. 1)

For kxo=nn/2 this approx1mat10n is, in fact, exact. The frequency shift (20) agrees with earlier values obtained by
different methods when sin®kx, takes its maximum value. The solution (19)-(21) should be compared with Egs.
(28)-(30) on p. 38 of Davidson’s book* for the nonrelativistic limit, c— oo. Relativity brings in a dependence of the
frequency on the amplitude and on xo, and a secular term in the denominator of n. Thus the “oscillation” is no longer
periodic. If we keep x¢ constant, we can follow an individual fluid element, and see how it moves and condenses as ¢ in-
creases. Unless kxo is a multiple of n/2, the density will eventually become infinite due to the secular term in the
denominator (for a somewhat similar situation in a different problem see Ref. 19). Our solution (19)-(21) can only
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really be used up to and including the first flare-up of
this kind. This will happen for a specific value of xo and
after roughly (kc/Awp.)? “oscillations” when this num-
ber is large. The exact value of ¢ corresponding to this
flare-up can be obtained by demanding that the denomi-
nator of n be zero and x its first root.

It is important to note that this explosive behavior will
be observed for general initial conditions. To see this,
note from (9) that since v =p/(1+p2/c?)'?,

-, 9
D=1—wy’——
“re §xo | 87 0t

@g_aL

Since the solutions to (9) can be written in the form
p=plt/T(x0),x0] where T is the period, differentiation
leads to a secular contribution to D proportional to
t/T*dT/dx,. This term will cause D to vanish after a
finite 7, giving an infinite value for x.

An exception to the above explosive behavior is fur-
nished by the BGK waves of Akhiezer and Polovin 12. see
also the recent paper by Katsouleas and Mori.? These
structures are functions of just one variable x —uvt¢ and do
not exhibit explosive behavior. However, the initial con-
ditions required to set them up are very special and
would involve nonzero p(x(,0) in contradistinction to
(19)-(21). (For more on this topic for nonrelativistic
plasma waves, see Albritton and Rowlands,® where these
very special initial conditions are given explicitly. Exten-
sion to the relativistic case would not be difficult.)

All other initial conditions, including all such that
p(x0,0) =0, lead to our relativistic bursts.

In a recent simulation,?' a large amplitude, relativistic
Langmuir wave was studied numerically. The wave was
found to steepen much more severely than expected. We
suggest that this steepening might be due to the secular
behavior of the denominator in the expression for the
density; for example, as given by (19) [in the simulations
(Aw,/ke)*=0.16]. This would then be due to relativis-
tic effects and hence it would not be surprising that it
was not found in the nonrelativistic simulation. Howev-
er, there is not enough detail in Ref. 21 for a fit between
our theory and the simulation. We put this idea forward
as worthy of further consideration and not as a definite
proof. It should be stressed that our new exact solution
describes a wide range of situations and should be the
source of many comparisons with results of simulations
in the future.

In conclusion, it has proven possible to explain the
unexpected steepening of the electric field of a relativistic
Langmuir wave found in numerical simulations?' by
looking at the corresponding exact solution. As the cru-
cial behavior is explosive (the denominator vanishes), a
straightforward expansion in 1/c? or A would not be
sufficient to obtain this result. In practice, infinite densi-
ty cannot of course exist and the basic model given by
(1)-(4) must be extended to include more physics. This
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would limit the density excursion but presumably after
the first burst the present model could be applicable once
again. The fact that the occurrence of a burst is inevit-
able in our model, almost regardless of initial conditions,
suggests that in a real system a succession of bursts will
occur.

It is not clear what the extra physics referred to above
should be. One’s first thought would be to include
thermal effects as was done for nonrelativistic fluid plas-
mas in Ref. 6 and for relativistic BGK waves in Ref. 20.
However, as stressed above, BGK waves are a very spe-
cial case not exhibiting bursts, whereas according to Ref.
6, thermal effects in the fluid model limit the class of
possible initial conditions but do not preclude those lead-
ing to relativistic bursts. Thus one should probably look
further afield, perhaps to Landau damping. However,
this would not be covered by any fluid model.

The question of the relavence to the beat-wave appli-
cation is open at this stage. The present theory does not
cover it, but could perhaps be so extended. The simple
analysis of Akhiezer and Polovin, which is a BGK mode
treatment, may be more relevant. This would depend on
whether bursts are observed in beat-wave applications.
We leave this problem to a future paper.
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discussion that led to an understanding of the role of the
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