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Computer Simulation of Chiral-Symmetry Breaking in (2+1)-Dimensional QED with N Flavors
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Noncompact quantum electrodynamics in three Euclidean dimensions with N species of four-
component Dirac fermions is simulated by lattice-gauge-theory techniques. On an 8 lattice we find
chiral-symmetry breaking in the continuum limit for N +N, but no symmetry breaking for N~ N„
with N, =3.5+ 0.5. A physical picture of our results is presented.
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Quantum electrodynamics in 2+1 dimensions (QED3)
is a surprisingly interesting and relevant field theory. It
is often mentioned in high-energy-theory applications as
an example of a model with chiral-symmetry breaking.
In condensed-matter physics, it has been shown that
there is an interesting relation between QED3 [also
SU(2)3] and models of strongly interacting fermions
that are good candidates to describe the new high-T, su-
perconductors. ' Although the theory is superrenormaliz-
able (the coupling e has dimensions of mass), it has
many similarities with four-dimensional field theories
with dynamical-symmetry breaking.

The Lagrangian of QED3 in the continuum is given by

N

I.= 4 Fp F" + g g )' (tBp eAp)gj=l
where we have included N species of massless fermions.
QEDq has two main formulations: (i) If two-component
spinors are used then the CliAord algebra is satisfied by
the 2&2 Pauli matrices. The theory has no chiral sym-
metry and the mass term breaks parity explicitly. In-
teresting phenomena exist in this formulation because a
mass for the photon is dynamically generated through a
Chem-Simons term. (ii) We can also consider spinors
with four components. In this case there is a chiral sym-
metry in the model, as in four dimensions, since we have
a y' matrix. For this reason we concentrate on the
four-component model. The mass term does not break
parity but only chiral symmetry as usual.

We report here a numerical study of the four-com-
ponent theory which uses the lattice techniques recently
applied to the more dificult problem of the existence of
multiflavor QED in 3+1 dimensions. Our simulations
on relatively small lattices (6, 8, and limited data from
10 systems) indicate that QED3 with N Dirac fermions
breaks chiral symmetry only for a sufficiently small num-
ber of dynamical fermions with a critical number of fer-
mions N, =3.5 ~0.5. For N ~ N„measurements of the
chiral condensate (gg) indicate symmetry breaking in the
continuum limit of the lattice theory. However, for

N ~ N, no symmetry breaking is found.
There are some analytic studies of this model in the

framework of the Schwinger-Dyson equations combined
with the 1/N expansion. For some time it was believed
that QED3 had chiral-symmetry breaking for a large
number of flavors although with a dynamical mass ex-
ponentially small with N. We found no evidence of
such behavior.

In fact it is interesting that our new numerical results
are quantitatively similar to a recently revised study of
the continuum model in a more carefully analyzed 1/N
expansion, where no chiral-symmetry breaking was
found for large N. This study also illustrates the new
fermion algorithms developed for lattice QCD.

The lattice (Euclidean) version of this model using
staggered fermions is given by the action

N

zi pX ~p+ Z X titxMx, y tiry
p j= 1 x,y

where M is the Dirac operator on the lattice defined as

1 i 8x,p
—i8

M& J & Z ti, p[e '
Bs &+„e By x —p]+mB& y

P

(3)
where x, p, and p denote sites, directions, and plaquettes,
respectively, of a three-dimensional cubic lattice. 0 „
are dimensionless fields on the links of the lattice that
are proportional to the gauge fields through the relation
H„„=eaA„(x), where a is the lattice spacing which acts
as an ultraviolet cutoK tlt„and tlt are (dimensionless)
one-component Grassmann variables on sites (i.e., to
reduce species doubling in the continuum we use stag-
gered fermions). The lattice fermionic fields are related
with their continuum counterparts through y„a@,-.
The rest of the notation is standard. A careful analysis
of the naive continuum limit has been done in Ref. 8
showing that the continuum fermions coming from Eq.
(2) correspond to the four-component theory.

The dimensionless coupling constant p of the lattice
action is related to the charge by p=l/e a. Then, the
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FIG. 2. P2(Py) vs P for N=O and 1. The dashed lines are
visual estimates of the chiral condensates of the continuum
theory.
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rithm. A similar plateau in the N=1 theory is also
shown in Fig. 2. Because of screening, the chiral con-
densate is suppressed but P (yy) appears to have a
nonzero plateau although a study with a bigger lattice is
necessary to clarify this point (in preparation). The
character of the data did not change qualitatively f'or
%=2. By contrast, the N=4 and 5 data show clear non-
analytic behavior. Inspecting Fig. 1 for %=4 we see
that (yy) is essentially zero for P) 0.25 but is nonzero
for stronger coupling. The nonanalytic character of the
curve is emphasized in Fig. 3 which shows (yy) vs P.
Clearly the data are weil fitted by a mean-field behavior,

with P, =0.204+0.001 (remember that the order-pa-
rameter critical exponent is predicted by mean-field
theory to be half independent of the dimension of the
system). This is a theoretically satisfying result. In fact,
we expected either a first-order or a mean-field chiral
transition in those cases where these models have a tran-
sition at finite P. Such phase transitions would not lead
to an interacting relativistic heLd theory in the strongly
cut-off lattice model (although we cannot exclude the
presence of logarithmic corrections that can make the
continuum theory nontrivial). Firtding an interacting
continuum model at such a point would be very puzzling
indeed. The A=5 data are qualitatively similar to the
N =-4 case. ln this case (fyy) =0 within statistical errors
for each P value of 0.175 and larger. The N=3 curve

may also be nonanalytic but this case is not as clear.
Perhaps IV, is quite close to 3.

Can we develop a physical picture and a quantitative
calculational technique to assimilate these numerical re-
sults~ models of chiral-symmetry breaking in two- and
four-dimensional quantum chromodynamics show how
the long-distance attraction due to Aux-tube formation
leads to a negative self-mass for constituent quarks. This
eA'ect leads to a chira1 condensate and the existence of a

FIG. 3. (Py&' vs P data from Fig. 1 for the IV=4 theory.

multiplet of Goldstone pions. ' We found, by perform-
ing the same calculations as in Ref. 13, that such a phys-
ical picture can be made for QED3 in the quenched,
N =0 limit, and that the inclusion of N species of
dynamical fermion can be seen to generate a finite N;. .

Consider the energetics of pair condensation. Follow-
ing Amer et a/. ,

' it is easy to show that the logarithmi-
cally confining the Coulomb potential in two-space di-
mensions leads to an infrared singular seif-energy for the
electrons. For low momenta (p«e ) the energy of an
e e composite

E =-2p —(e /2')ln(e /p) —(e /2x)ln(I/e r)

can be made negative, although both kinetic and poten-
tial energies are positive. Here, —(e /2+)ln(e /p) is
the electron self-energy calculated in the ladder approxi-
mation, and —(e /2')ln(1/e r) is the bare potential.
As a consequence, the massless vacuum is destabilized
and the condensation occurs at low momenta (p «e ).

For N & 0 the presence of virtual fermions makes the
physics of chiral-symmetry breaking diferent in two
ways. 'The general form of the full photon propagator is
D ' (k) =- k +e Nf (k). Using gauge invariance and
dimensional analysis, we conclude that f(k) vanishes
linearly with k. At large distances (r»1/Ne ), the
long-range static potential between the charges is par-
tially screened from (e /2x)ln(e r) to —const/Nr. The
precise value of the constant can be determined from the
exact form of the vacuum polarization tensor. When the
propagator corrections are well approximated by the
one-loop contribution, the value of the constant is 4/x.
The physical reason for the softer infrared behavior is
easily understood. If we fix two charges at large separa-
tion, they will interact strongly since the bare interaction
is confining. Virtual pairs from the vacuum will tend to
neutralize the test charges, thus diminishing the eAective
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strength of the interaction. The two immediate conse-
quences are that the self-energy is softened in the in-
frared and the interaction is negative in that region.
Therefore, as N increases from zero, the effect of the
negative self-energy becomes less important and the con-
densation is driven by the I/Nr attraction. Now, the en-

ergetics resemble four-dimensional QED with supercriti-
cal coupling. ' In that case the energy of an e+e pair
is estimated from the uncertainty principle: E =2p—a/r = (1 —a)/r, where a is the four-dimensional cou-
pling constant. As long as the coupling is above some
critical value, the condensation is energetically favored.
The reason for the existence of the critical 2V is then
clear from this analogy: The four-dimensional coupling
is replaced with const/1V, and chiral symmetry is broken
only if this coupling is supercritical, i.e., 1V & N, .
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