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It is shown that generically cosmic strings will interact with matter via their pure gauge potential.
The cross section is purely geometrical, and does not vanish in the limit of zero string size. The mecha-
nism is the Aharonov-Bohm eAect, which is already known to cause scattering of charged particles oA an
infinitesimally thin solenoid. A related mechanism for particle production is also discussed.

a =R~/R~, (1.2)

and so there may be a gauge interaction with the string
just as with a solenoid. The vector potential is not neces-
sarily associated with ordinary electromagnetism (in fact
the gauge boson may have a large mass), and we will use
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l. Introduction. —In a famous paper, ' Aharonov and
Bohm emphasized that the vector potential, which in
classical physics is merely a convenient parametrization
of the field strength, takes on independent physical
meaning in quantum mechanics. A particularly clear il-
lustration of this is the example discussed in their paper,
the case of a charged-particle scattering ofI an infinites-
imally thin solenoid. The field strength is zero every-
where outside the solenoid, and (as is easily shown) the
wave function of the particle vanishes at the solenoid, so
the particle is never located in a region of nonvanishing
field strength. Classically no force acts upon it. Yet the
particle does scatter, with a cross section per unit length

dtT sin (trtt)

2trk sin (0/2)

where a =A/No=(e/2tr)+ is the ratio of actual Aux +
through the solenoid to the basic Aux unit @a=2tt/e as-
sociated with the charge e of the particle, k is the
momentum in the plane perpendicular to the string, and
0 is the scattering angle. Note that this cross section is
nonvanishing as long as a is not integral, that it has a
simple universal form, and that it diverges both at low

energy and for forward scattering.
In the interaction of cosmic strings with matter, essen-

tially the same situation arises. Outside a tiny core re-
gion we have vanishing field strengths, but nonvanishing
vector potentials. These arise in a unified gauge theory
with gauge group G, coupling constant g, with a scalar
field p which acquires a vacuum expectation value v

(breaking G H) and winds around the z axis once, i.e.,
as r ~, (&p(r, p)) exp(ittttcR~)v Ris som. e broken
generator of the gauge group, and the scalar p couples to
the corresponding gauge boson field 8" with charge gR~.
We choose tc so that exp(i2tttcR~) is in a disconnected
component of H. The line integral fA dl gives the en-
closed Aux &=2tt/gR~. For a fermion ttf that couples to
A" with strength gR~

126 = (1,10)8, 45 = (24, 0) 8
10=(5,2) e(5, —2),
16 = (1, —5 ) 6 (5,3)S (10, —1),

(2.1)

where in the case of 126 and 45 we have indicated only
those pieces that acquire vacuum expectation values.
The first stage of symmetry breaking is implemented by
the 126, and breaks Spin(10) SU(5) SZq. We can
form a Zq string at this stage, by winding the nonzero
component of the 126 through a phase 2z as we circle
the string at infinity:

&(p) =exp(ipg/10)N(0) . (2.2)

This is most energetically efficient if the vector potential
is pure U(1) at infinity, so that the string contains only
U(1) Aux. The various components of the fermion field
will then wind through phase angles of —tr, 6tt/10,
—2tt/10, etc. , so they have acquired exotic angular mo-
menta.

The next stage of symmetry breaking, SU(5) Zz
SU(3)SU(2) SU(1)&SZz, is implemented by the

45, which transforms as a singlet under U(1), so it does
not have any phase change around the string.

Finally we want to reproduce the symmetry breaking
of the standard model: SU(3) SU(2) SU(l ) y SZ2

SU(3) SU(1)~ SZz, which we do by giving a vacu-
um expectation value to the components of the 10, that

relativistic kinematics, but the essence remains. In this
Letter we shall demonstrate that the generalized
Aharonov-Bohm eA'ect gives in some sense the dominant
interaction between matter and cosmic strings, and in
particular leads to scattering cross sections and to parti-
cle production rates that do not go to zero as the geome-
trical size of the string goes to zero.

2. Example grand unt'f'ted theory To g.i—ve our con-
sideration a definite context we will calculate the eA'ec-

tive values of e for various particles in the presence of
one particular cosmic string, the usual one contemplated
in SO(10) grand unified theories.

The group theory we require is contained in the de-
composition of the representations of the symmetry-
breaking Higgs fields and the fundamental fermion mul-
tiplet under an SU(5) SU(1) subgroup of Spin(10):
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j(.' =Q+4I„- —) Q. (2.3)

correspond to the ordinary Higgs doublet. From (2.1)
wc see that the 18, has 0 = + 2, which means that the
10 acquires a phase difference of 2tt/5 in circhng the
pure U(1) string, which is incompatible with its condens-
ing with a dcfinite vacuum expectation value.

The solution to this problem is to 3dd other forms of
flux to the string in such a way that the component of
the 10 that condenses acquires no phase diA'erence

around it. We know that the relevant part of the 1IO is a
color singlet and isospin doublet annihilated by the elec-
tromagnetic charge Q. To express Q in terms of the gen-
erators of Spin(10) and its SLJ(5) subgroup we must
know how they act on the 16 of Spin (10). Then we can
sce which components of the 10 condense, and adjust the
flux in the string accordingly.

Thc cncI getically favored answcl is

The diIIIerential cross section will;. hen bc

(3.2)

cr3 0
0 1

l02 0

0 lo2)
r

lG] 0

0 —1 0

Since there is no 63 or A3 in the Dirac equation, it falls
apart into two independent equations for two-component
spinors. Wc write 2, in Lorentz gauge,

To exploit thc symmetry of the stI"ing Under z tI ans) a"
tions, we use the following representation Gf the y xva-

trices ':

This gives R =0 for the condensed component of the 10,
R =10 for the 126 (i.e. , A~=10), and for the fermions
we find, using (1.2),

1
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so that with the Ansatz

e lu)f

02
Since these values of o are nonintegral, there can be
significant Aharonov-Bohm scattering.

For the ordinary components of matter, protons, elec-
trOnS, and neutrOnS, we find e = —4, —,and ——, , re-

spectively. A neutral atom v ill therefore have o: integral
or half-odd integral, depending on whether the number
of neutrons in its nucleus is even or odd. Since in these
cases the scattering is zero or maximal, respectively, we

come to realize that this particular cosmic string is an
excellent isotope separator. It is, however. evident that
the e values for fermions interacting with strings depend
on the details of the grand unified theory under con-
sideration.

3. Differential scattering cross section In this sec-.—
tion we calculate the cross section for the scattering of a
relativistic fermion OA a vortex in 2+1 dimensions. This
will be the same as a normally incident fermion scatter-
ing OA' a cosmic string along the z axis in 3+1 dimen-
sions. The Dirac equation is (ikey —m' —)iiI=0, and
the flux associated with a solution y is J"=yy"y. To
calculate the diIITerential cross section we must find the
complete set of solutions to the Dirac equation, and con-
struct a superposition of them that makes an incident
wave Ip

' an infinity. ThiS will alSO COntain aO OutgOing
circular wave, the scattered wave:

the equations of motion become

0 f
(a) —m)u) = —ie " —+8, ——8, u2,

(a)+m)up = ie"— +8, + Byr r

A basis for the set of positive-energy solutions is

J+ („+„)(kr)e'"'
t(t)7e

e
—

t (~..+~y)

[ 03+m

where J, are Bessel functions. We will impose the
boundary condition that the top component of the spinor
be regular at the origin. Gerbert and Jackiw have
pointed out that this is not the most general boundary
condition; however, it is the correct one for a solenoid
containing pure magnetic flux B, &0. A more detailed
discussion will be published elsewhere.

A suitable form for the incident wave is

Following Aharonov and Bohm we will choose the in-
cident wave to describe a flux of particles paralle1 to the
x axis, coming from x =+~, so J,-' will bc negative.

This is a solution to the Dirac equation with

J (i) 2& J (i)
O

M+ Pal
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so it corresponds to a fiux of particles coming down the x axis, as required. To calculate the scattering cross section we
now need to find a superposition of the Pt,„ that tends to the incident wave at infinity. Luckily this has already been
done for us by Aharonov and Bohm. They showed that

tt )(r, w) = g ( i—) '"+'J„+.(kr)e'"'+ g ( i—) '"+'J—(„+.)(kr)e'"'
n&0

~ ikr iy/2—e '~~" +"'— " '
sin [ tta

f

(2~tkr) ""- c»(e/2)
(3.1O)

ikr iy/2

y = i — siil (tta )
(2~ikr)'" «s(O/2) k

, N+ftl

(3.11)

For (x outside the range 0 to 1 extra phase factors ap-
pear, but do not aA'ect the cross section. Using this and

(3.9) in (3.2) we find the scattering cross section. Note
that p is not the scattering angle, since the particles were

traveling in the negative x direction. The scattering an-

gle is O=tt —p, so

where 0 & e & 1. The final term is the top component of
We can obtain the bottom component by using

(3.6), and keeping only terms of order r 't . This yields

the full scattered wave:

ment of the massive gauge field using the ordinary Max
well equations. In particular it seems there might be ra-
diation from the string. Actually our solution (4.3)
satisfies the stronger field equation

aP
+@v

=
&p vaP~ (4.4)

that would follow from (4.1) by canceling the deriva-
tives. This stronger field equation shows that F„, is lo-
calized on the string world sheet after all. The potential
outside has no field strength, but is globally nontrivial as
it should be. These are strong indications that (4.1) is
the proper equation for the potential outside the string in

a full Higgs theory as the mass scale of the heavy fields
becomes large, and the string correspondingly small.

Now for the Dirac field we generate approximate solu-
tions using

sin (xa)
2ttk sin '(0/2)

(3.1 2)
y(x) = yo(x) —„«x,y) &~(y) y(y) dy

4. Particle production. —We expect there to be a par-
ticle production mechanism closely related to the
Aharonov-Bohm scattering, essentially by crossing the
initial particle over into the final state. The computation
is substantially more difficult, however, so here we only
outline our approach to the problem, which reduces it to
quadratures; detailed results will be presented elsewhere.

We are interested in the effect of a moving string on

the quantum fields around it. The problem naturally
divides itself into two parts: calculation of the gauge po-
tential associated with the moving string, and calculation
of the effect of this potential on the matter fields.

For the first part we work with the field equation

6 Fpy epp~p8 S

where

(4.1)

I s
62

(4.3)

The 1/8 is to be interpreted as the retarded Green's
function. The reader might well wonder about our treat-

g,p(r) = ' 6(r —r„(z,t))6(ri, —rz(z, t)) (4.2)'Br[, Brpl

dt t)z

is a source of vorticity along the string. Here r(z, t) de-
scribes the world sheet of the string. This source is man-
ifestly covariant [regarding 6(x) as 1/dx], and, as is

easily checked, gives the correct result in the static limit.
We readily solve (4.1) in Lorentz gauge 6 "A„=O, to find

= yp(x) —JI IC(x,y) 6A(y) yp(y)dy, (4.5)

where K(x,y) is the Green's function, pro is a solution of
the Dirac equation in the presence of potential A0 due to
a static string, and 6A =2 —A0 is the perturbation of 2
caused by a small localized motion of the string. It is
necessary to treat the static field exactly, since it is in no

way a small perturbation. The generalization of (3.7) to
3+1 dimensions provides us with the complete set of y0
and with K in the usable form of an infinite series.

Having computed y(x)—or, operationally, the first
term on the right-hand side of (4.5)—we take its inner
product with the negative-frequency solutions to derive
particle production amplitudes in the standard way.

%'hile this procedure is explicit and straightforward in

principle, the integrations are arduous and the results
complex. We will present them elsewhere.

5. Comments. —(1) Until now the standard reference
on the scattering of matter from cosmic strings has been
Everett. We believe that his analysis neglects the dom-
inant efect, which is the Aharonov-Bohm interaction de-
scribed above. He argued that the vector potential out-
side the string is negligible because it can be gauged
away everywhere except for a singular plane (measure
zero) whose location is arbitrary. As we have seen by
explicit calculation, this plane nevertheless affects the
cross section, for nonintegral e.

Everett went on to estimate a nonzero total cross sec-
tion for a string of radius R, crcx: 1/[kin (kR)], from
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which Vilenkin obtained the friction on a moving string.
Our result dominates Vilenkin's by a logarithmic factor
[see comment (S)].

(2) In Ref. 4 and subsequent papers based on it,
matter scattering from cosmic strings was analyzed by
modeling the string in an eAective Abelian gauge theory.
However, the eA'ective fermion changes were taken to be
commensurate with the llux (a=integer, in our nota-
tion), and so the Aharonov-Bohm effects calculated
above were missed.

(3) The analysis above has concerned strings for
which the left- and right-handed components of the fer-
mion fields have the same effective charge e. If this is
not the case, the mass becomes eA'ectively angle depen-
dent and there will be zero modes on the string. Calcu-
lations of scattering and particle production will have to
take account of the possible excitation of these modes.
We leave these interesting problems for future investiga-
tion. A closely related problem can occur even for our
Spin(10) string where a Majorana mass for the neutrino
is angle dependent. This is a simpler problem because
the neutrino zero modes do not come with the extra bag-
gage of ordinary electromagnetic interactions.

(4) lt is also interesting to consider scattering under
the influence of vector potentials as discussed here, tak-
ing into account the conical distortion of space by the
gravitational influence of the string. As Gerbert and
Jackiw have noted, the relevant equations are implicit
in their calculation of the gravitational eA'ects of a spin-
ning cosmic string, since the spin contributes an
Aharonov-Bohm-type scattering term to the cross sec-
tion.

(S) After this work was completed, some previous
published work by Rohm was brought to our attention,
in which he derived the result (3.12) for Aharonov-
Bohm scattering of fermions oA a cosmic string. He also
calculated the frictional eftect, namely, the rate of ener-

gy loss per unit length for a string moving through parti-
cles of number density n at speed v (Lorentz factor 7).
By boosting (3.12) to the rest frame of the particles he

found

=2Anyv
dF.

dl dt

This is to be compared with Vilenkin's result,

(s. l)

= nv 6/ln (kR),
dl dt

(s.2)

where k is the momentum of the particles in the string
rest frame. This has a similar form to the friction due to
Aharonov-Bohm scattering, but suppressed by a loga-
rithmic factor of about 1000 for typical grand unification
scales, k —1 GeV, 1/R —10' GeV.
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