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Using formal arguments based on conformal invariance and on the connection between correlated-site
percolation and the q-state Potts model with vacancies, we show that the exponents describing Ising clus-
ters at Onsager s critical point are those of the tricritical q = 1 Potts model. This implies, in particular, a
fractal dimension d = '9'6 and a percolative susceptibility exponent y= 4,', in good agreement with exist-

ing numerical estimates. This d is also clearly supported by a new very accurate Monte Carlo Anite-size

scaling determination. We also conjecture an exponent yJ =,'4 controlling the crossover between clus-

ters and droplets.
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The study of connected clusters of sites with, e.g. , up
spin in the Ising model has a long history, which goes
back to the formulation of the phase transition problem
in terms of a droplet model. ' Many investigations
tried to clarify the connections between the percolation
properties of such clusters and standard, magnetic prop-
erties of the Ising model. In spite of many attempts,
however, a full and exact characterization of the scaling
properties of Ising clusters, e.g. , at the d=2 Onsager's
critical point, is missing at the moment. In particular,
for these clusters, the fractal dimension d is still contro-
versial, and only relatively crude numerical estimates ex-
ist for it. '

In this Letter we present theoretical arguments and
numerical results which fully elucidate the nature of the
d =2 Ising critical point as a multicritical point for cor-
related-site percolation.

Let us consider, e.g. , the Ising model on the square lat-
tice, with reduced Hamiltonian

where the first sum is over nearest-neighbor (nn) sites,
and S; = L-1. On the basis of rigorous work, we know

that in the (h, K) plane there exists an infinite cluster of
spins in the whole region h & 0, K ~ K, = —,

' In(1+ J2).
In addition, an infinite cluster of up spins is present in a
region h & hp(K), K (K,. While the function hp(K) is

not known, some of its properties are. hp(K, ) =0, and,
as K goes to zero, hp(K) should approach a positive
value hp(0), which is related to the site percolation
threshold probability of the square lattice p, =0.59' by
the equation exp[hp(0)]/2coshhp(0) =p, . It has been
shown rigorously that Onsager's critical point (h =0,
K=K, ) is also critical with respect to percolation of up
spins. In addition, the whole line K (K„h =hp(K) is
expected to be critical. The point K =0, h =hp(0) corre-
sponds to standard, uncorrelated-site percolation. For K
& K„ it has been shown that the percolative order pa-
rameter is zero for h =0 and & 0 for h =0+. This
implies that h =0, K) K, corresponds to a first-order
transition line for the correlated percolation problem.
Thus, it is natural to expect that the Ising critical point
should have the nature of a tricritical point as far as per-
colated properties are concerned. This fact is suggested
very clearly, e.g. , by a recent numerical investigation of
interacting-site percolation on the square lattice. ' In
this study a phenomenological renormalization-group
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(RG) analysis of the problem gives clear evidence of a
tricritical point, located at parameter values which are in

very reasonable agreement with Onsager's exact critical
values (@=0.45 instead of 0.44. . . and h =0.02 instead
of 0). In Ref. 14 ar estimate of the tricritical v exponent
is also reported (v=0.513). However, while there this
value is interpreted as an indication that the problem
could belong to the same universality class as the 6 point
of branched polymers, ' here we will argue differently.

We consider a dilute q-state Potts model on a square
lattice with the reduced Hamiltonian. '

—PH([n1, 1~1) =Lan;n, +~gn;+ Jgn;n, (S,. ,—1)

+Hen, (S.„,—1), (2)

percolative quantities. Such a generating function is in-
stead given by g =Bf/Bq ~~=1. The first and second
derivatives of g with respect to 0, at H =0, are indeed
simply related to the percolative order parameter and to
the mean cluster size, respectively, of site-bond correlat-
ed percolation. ' In this problem two nn up-spin sites
in an Ising configuration are considered as connected
with probability @II. In the limit J ~ (pll =1) we re-
cover, in particular, correlated-site percolation.

For a two-dimensional scale-invariant system which is
also conformal invariant, it has been shown that, when
the model is defined on an M x ~ periodic strip, the free
energy per site fM approaches the thermodynamic limit

f according to the asymptotic law'

fM =f Irc/6M—+O(1/M'), (4)
where n; =0, 1 is a lattice-gas variable, and
o.; =1,2, . . . , q is a Potts variable. The first two terms of
(2) reduce to the Ising Hamiltonian (1) if we put
n; =(1+5;)/2 and L =4', 6=2(h —K). For q (4 this
problem is expected to have both critical and tricritical
points. For the tricritical branch, in particular,
Coulomb™gas methods and conformal invariance results
give analytic expressions for the exponents as a function

16, 17

By standard methods one can show that the partition
function of problem (2) on an N-site box becomes '

Z =Tr~„}exp 'Lgn; n~+Agn;
'

q
(ij ) i

x Tr,pII "(1—@II)'"$Q[1+(q—1)e

where the trace over- 0's has been performed and p~
=1 —exp( —J), can be interpreted as the probability
that a bond is present between nn sites that are occupied
(n = 1) In a lattice-gas collflguI'atloll [nj. 1' Indicates
bond configurations and R~ and L~ are the numbers of
bonds, respectively, present or missing in the lattice re-
stricted to the occupied sites. The product runs over
clusters of occupied sites which are connected in terms of
occupied bonds, and n, denotes the number of sites in

cluster C. This partition function, or the corresponding
free energy, f =limJv ln(Z/Jl/). , has two important
properties. For q 1 and H=O, f reduces to the Ising
lattice-gas free energy, since the trace over y in Eq. (3)
gives 1 for every 1n1. Actually this is also true for H&0
because f becomes independent of H in the q 1 limit,
with the particular subtraction we embodied in the H
term of Eq. (2). For H=0, however, the above property
would still hold also without such subtraction. Thus in
the q 1 limit the free energy obtained from (4) is in-
dependent of J and always equal to the corresponding
lattice-gas free energy along straight lines at constant L
and 5 in (J,L,A) space. However, one cannot yet draw
thermodynamic consequences. The free energy f, even if
relevant for con formal invariance considerations (see
below), is not the appropriate generating function for

where c is the central charge of the theory, the key num-
ber for a determination of all critical exponents within
the conformal classification scheme. ' From conformal
invariance it is known that boih the tricritical point in

the q =1 Potts model and the Ising critical point have
17

It is now crucial to remark that the behavior of (4),
for c~0, is specific of scale-invariant points. The ap-
proach would be exponential in M, if the point were not
critical. As the free energy of the tricritical q =1 Potts
model (3) only depends on 6 and L and equals that of
the lattice gas, and as the critical Ising point (h.
=3.52. . . , J, =1.76. . . , or E=E„h =0 for the square
lattice) is the only scale-invariant point of the lattice gas
for which Eq. (4) holds with c = —;,the tricritical points
of the q =1 Potts model must lie along the line h =0,
A =E'.

Even though the free energy given by the logarithm of
(3) does not have the properties of a true generating
function, it turns out that the Kac table associated with
the central charge obtained on the basis of (4) from that
free energy contains the right critical exponents. This is,
e.g. , also the case for ordinary percolation and for the
problem of self-avoiding walks. ' '

Conformal invariance combined with other arguments
allows us to establish a number of properties of the RG
flow on and around the line K=E„h =0. First of all
this line must be invariant and fully unstable for the RG
flow. Indeed K =E„h =0, according to what we argued
above, is the only locus of scale-invariant points with
c= —,

'
in (J ', h, EC) space. In this space the q =1 Potts

tricritical fixed point (f.p. ) is repulsive in only two direc-
tions'; as a consequence it must be attractive along the
line. If it were not so, the existence of scale-invariant
points with c =

2 out of the line would follow.
A case in which the properties of model (2) become

transparent is J=0. For every q, and for J=0, the mod-
el reduces to the standard Ising model. So we expect
that the point J ' =~, h =0, K =E, has the critical be-
havior of the Ising model in K=K, and h, with ex-
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ponents equal to 1 and '85, respectively. Since J=o
should be transformed into J'=0 under renormalization,
we also expect J ' =-~, A =0, E =K„ to be a f.p. ,
which has to be attractive in view of the Ising character
and of the already mentioned relevance in K —A., and h.

So, on our line the region with high J ' is in the
domain of attraction of this f.p. Compatibility with the
existence of the attractive q = 1 Poits tricritical f.p.
clearly requires a' least one further fully repulsive f.p. on
the line at some finite J. This f.p. must be located at the
special symmetry point with J=L/2 =2K. Indeed, as
noticed in Ref. 7, for J=2K, and H=O, model (2) be-
cornes equivalent to an asymmetric (q+1)-state Potts
model. When q =1 the model reduces to an Ising model.
So, for q =1 we must have a multitricritical f.p. with
c= 2 at J=2K„and the critical singularities must be
those of the Ising model in E —K, and h. The RG Aow

consistent with the above properties is sketched in Fig. 1.
Besides being the most simply conceivable, it is aiso
clearly supported by approximate RG fIow diagrams ob-
tained in Ref. 7. The Aow pattern in Fig. 1 is also con-
sistent with the Aows one can obtain for q =2 and q =3
realizations of model (2).

Thus we conclude that the point (J ' =0, /t =0,
K =K, ) is attracted by the tricriti'al q =1 Potts f.p.

There are four q =1 Potts tricritical exponents' ':
two magnetic, of which the leadiilg one is yH = 96, asso-
ciated to the field H in Eq. (2), and two thermal ones,

y, = '8' and y =1, which should describe the scaling Row

when we move, at 0=0, in the neighborhood of h =0,
P:=E,. As far as the last two exponents are concerned,
it should be noticed that these values were already con-
jectured for Ising clusters on the basis of Migdal calcula-

I

C

&g h~(O)

FICi. l. Qualitative picture in (J ', h, K) space. The short-
dashed curve represents h =ho(K). The sttaight line K=PC„
h =0 is a line or scaling invariant points with central charge
c =

2 . The fully repulsive fixed point on this line is predicted
in Ref. 7 and corresponds to /sing droplets. The tricritical
q= I Potts f'. p. is attractive on the line. Qn the A axis for
K & K, (long-dashed line) we have first-order transition".

tions. ' Here we combine these values with a precise pre-
diction also for yH, which, in a percolation problem is ex-
pected to yield the fractal dimension d of the clus-
ters. ' This fractal dimension has been investigated
recently by Monte Carlo methods and estimated as
d=1.90~0.006, '- which is quite compatible with our
result, d =1.947. . . . Our predictions have a more sharp
agreement with another, presumably more accurate nu-

merical result, obtained by analysis of high-temperature
expansions of the percolative susceptibility of Ising clus-
ters, for A-- E„and A =0. The corresponding ex-
ponent was estimated as y=l.91~0.0jL. According to
our conjecture y=(2yH —2)/y = —,", =1.895. . . , which is

in excellent agreement with the numerical result. When
we move towards K, at It =0 in the (h, K) plane, as one
can argue using scaling-field arguments, the appropriate
exponent under which E —E, has to be rescaled is

indeed y as given above.
Since the direct d determination of Ref. 12 is not very

precise, in order to have compelling numerical evidence
of the correctness of our predictions, we made an in-

dependent effort to obtain yH, an exponent which was

not studied before. For Ising models defined on periodic
squares with side L (4»L ~ 36) and with interactions
fixed at Onsager's critical values we estimated the per-
colative susceptibility very accurately by extensive Mon-
te Carlo runs. Such a quantity is expected to scale like
L " and thus allows a direct determination of yqq.

2JH d

With high confidence we estimated yH = 1.94 ~ 0.01
which is very consistent with our conjecture.

The v exponent obtained in Ref. 14 is nothing but an
estimate of y, . The vaiue v=0.53. . . following from
our arguments is certainly not contradicted by this nu-

merical result, which, unlike in the case of our y~ deter-
mination, relies on an approximate location of the tricrit-
ical poifit.

Our results, combined with other known properties,
provide insight about the shape of the critical boundary
ho(K) in the neighborhood of Onsager s critical point.
We know that the line h =0. E & E, in the J
plane is a line of discontinuous transitions. We thus ex-
pect it to belong to a whole surface of first-order transi-
tion points in (J,A, K) space, which should be left in-

variant under renormalization transformations applied to
site-bond correlated percolation. This surface is expect-
ed to end at the line h =0, E ='K„where it meets with a .

s-cond-order transitions surface whose intersection with
the J ' =0 plane is given bv the equation h =ho(K) in-

troduced above. By introducing suitable scaling fields
corresponding to y& and y, respectively, and by taking
into account the first-order transition for h =0 and
K & K„ it is easy to show that

for K K, . Thus the curve h =ho(K) has zero slope
at A =E„i.e., the critical percolation line, at the tricriti-
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cal point, has the same slope as the first-order transition
line. This is qualitatively shown in Fig. 1.

Conformal invariance allo~s further insight into the
properties of model (2) for J 'c0. The above-men-
tioned unstable f.p. at J=2K, must have exponents con-
sistent with the Kac table' with e = &, from which both
the Ising critical and the Potts q =1 tricritical indices
can also be derived. Since at this special point the field
H in Eq. (2) cannot be distinguished from h, we con-
clude that yH =y, = '8' and y =1 at this f.p. , as first con-

jectured in Ref. 7. This implies that for J=2K, the scal-
ing and fractal dimensions of the clusters are completely
diAerent. This is what has been called Ising droplets be-
havior in Ref. 7. The crossover between Ising clusters
and Ising droplets is described by the relevant exponent

yJ of the f.p. at J=2E, on the line. Comparison with
the approximate estimates of Ref. 7 (yJ=0.5), and in-

spection of the Kac table with c =
2 shows that the most

plausible candidate is y~
=

24 =0.054. .. , corresponding to
the nonunitary choice of yJ =2 —263 2.

For J & 2K, we have a third regime of critical behav-

ior, in which percolative cluster properties are not
anymore becoming critical and y~ & 0, as we should ex-
pect for critical points of Ising type, since only two
relevant directions are allowed in that case, and these are
already given by the E and h axes.

Our results imply that the full set of exponents
describing percolation of Ising clusters at Onsager s criti-
cal point cannot be expressed just in terms of known,
magnetic Ising indices. Other proposals exist in the
literature, which connect exponents like y, or d, to mag-
netic Ising exponents. For example, a recent approach
led to y =y~», s+pt»„s=1.875, for the percolative 7' ex-
ponent. We notice that, if the estimate of Ref. 25 is

trusted, this prediction seems possibly to be not an exact
one. Most important, however, this result is completely
unacceptable in the light of our conformal invariance
considerations. Indeed y= '8' implies y~ = ', 6, a value

which cannot follow from the Kac table, with c = 2, for

any choice of 3,.
Another conjecture about d suggests d =d —

P~, ;„s/
v& g

= 1.875 ~ This seems, however, highly implausible.
Indeed we should then expect yH =d=1.875. This is

clearly inconsistent with our numerical results. More-
over, we then would get @=1.750, which disagrees with

Ref. 25. We saw above that d= '&' applies to Ising
droplets only.

In summary, in this Letter we have interpreted
Onsager's critical point of the d=2 Ising model as a tri-
critical point for correlated percolation, with tricritical
q=1 Potts exponents. This result follows from confor-
mal invariance arguments and is in remarkable agree-
ment with numerical results. Alternative proposals in

the literature are ruled out on the basis of clear numeri-
cal evidence and/or incompatibility with conformal in-

variance.
We mention that further evidence of the correctness of
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our predictions comes from an analysis of the surface
percolative magnetic exponent yH of Ising clusters. Nu-
merical results (yH =0.84+ 0.01) clearly support the
value yH =1 —h, 3 3 0.833... , which can also be predicted
on the basis of conformal invariance.

Conformal invariance also allows to conjecture the ex-
act value of the exponent yj controlling the crossover be-
tween Ising droplets and Ising clusters scaling behaviors.
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