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Exact Dynamical Behavior near the Critical Point in the Transverse Ising Model
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In the one-dimensional transverse Ising model, we calculate exactly the time evolution and the admit-
tance of the magnetization and also of the energy near the critical point. The results for the above two
quantities are shown to coincide with each other, and are explicitly represented in terms of functions of
the inverse static susceptibility. The analyses are made by using the recurrence-relations method
developed on the basis of Mori's continued-fraction representation.
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The transverse Ising (TI) model is the simplest solv-
able quantum model which exhibits a second-order phase
transition. Although the equilibrium properties' of this
system and its dynamical behavior at high temperature
are well known, its dynamical behavior near the crit-
ical point is less well understood. Recently Vaidya and
Tracy studied the time evolution of the AY model with
transverse field in various cases, one of which is near the
critical point in this model. Miiller and Shrock calcu-
lated the spin-spin autocorrelation in this model just at
critical point; however, from the viewpoint of irreversible
processes, to obtain an explicit form of relaxation func-
tion of an observable relevant to a phase transition as a
function of time has remained an unsolved, and interest-
ing subject.

Experimentally, it is known that there exist quasi-
one-dimensional Ising-type substances such as CsCo-
Cl3. 2H20. '

On the other hand, the recurrence-relations (RR)
method formulated by Lee has been successfully applied
to the analysis of the dynamical behavior of various sys-
tems. The formulation is based on the Mori's projec-
tion method in the continued-fraction representation.

In this Letter we will apply this method to the TI
model near the critical point and calculate exactly the
analytic forms of the relaxation function and the admit-
tance both of the magnetization and of the exchange en-
ergy. On this basis, we shall also analyze the properties
of the dynamical behavior near the second-order phase
transition in the TI model.

The Hamiltonian of this model is given by /t' =Pp
+M, where Pp = Jg; (o—,'(T +( =and M = —Hgz
=1 o~ are called exchange energy and magnetization,
respectively. It is well known that the TI model has a
critical point in the ground state (T=O) at H=J/2. '

For small e[=(H H, )/H,—] with H, =J/2, the static
susceptibilities of M and &0 take the same form given
by z. = —(J/4~) ln

I
e

I

According to the RR method, the operator A(t) can
be expanded in the form A(t) =P„=pa„(t)f„by an ap-
propriate orthogonal basis. By choosing fp =A, we have
the following two recurrence relations: f„+)=iLf„
+h„f„((RR —I) and A„+(a„+((t)= —a, (t)
+d,„a„—((t) (RR II), where A„=(f„,f„)/(f„),f„()—
with the canonical correlation function (A, 8),
Lf„=['iY,f„l, a„(t) =(d/dt)a„(t) and a —

) =0, f ) =0.
Applying the Laplace transform X to RR II, one can ob-
tain a continued-fraction representation for ap(t) of the
form

ap(z) =

z+ Z+. . .
with ap(z) =Zap(t). By virtue of the inverse Laplace
transform X ', the time evolution of A(t) can be de-
scribed by a general Langevin equation given by

g7
A(t) =a()(t)A+ „ds a()(t s)F(s) . —

In the above, ap(t) is equal to the relaxation function
:-(t)=[A(t),A]/(A, A) and F(t) is a generalized ran-
dom force given by P„=(b„(t)f„with b„(z) =a„(z)/
ap(z).

Now we consider the two cases where fp is chosen to
be Pp and M„, respectively. In the Hamiltonian P, &'p,
and M are represented in terms of anticommuting Fer-
mi operators with the aid of the Jordan-Wigner transfor-
mation. By straightforward calculation, we can obtain
(&(I",&(I" ) and (M„",M„" ) at T=O to first order in

(~(n) ~(n)) (M(n) M(n)) J (2n 2)" 1+ 2n+1-2~+ [

4tt (2n + 1)'.! 2
(2)

with M —= (iL) M. By inserting Eq. (2) and the static susceptibility into the norm of f„ in RR I and using REDUCE,
we calculate numerically A„up to n =20 to the first order in I/g, and e. From the result we guess the analytic expres-
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sion of 4, as

1+ J2 2n(2n+1) + 4n+1
(4n +3) (4n + 1) 2n (2n + 1)

(3a)

1+ -2 2n (2n + 1) (4n + 1)I+a J 1 — s, n&1,
(4n + 1 ) (4n —1 ) 2n (2n + 1 )

(3b)

where s—= —1/ln! e! =I/4', and hereafter we note J instead of (I+a)'/ J for convenience. The continued fraction
:"(z) constructed by inserting Eqs. (3a) and (3b) into Eq. (1) can be represented by the following quotient of hyper-
geometric functions, originally found by Gauss:

1 F(s/2, 1
—s/2;3/2; —J /z )

z F(s/2, —s/2;I/2; —J /z )

The algebraic form of:-(z) is written as

(J2+ 2) 1/2 [(J2+ 2) 1/2+ J]s [(J2+ 2) 1/2 J]s
:-(z)= —~ 1—

1
—s z [(J2+ 2) 1/2+ J]s+ [(J2+ 2) 1/2 J] s

(4)

In the above equation, the characteristic dynamical behavior of the system near the critical point is determined by s.
From Eq. (5), one can calculate the admittance, the so-called dynamical susceptibility or response function, by using

linear-response theory, i.e., g(co)/g, =1 —lim„o+ (icosi+ r/):-(iso+ q). We find that

Re@(co) =

(J2 2) 1/2

4srs (1 —s) J
[(J2 ~2) 1/2+ J]4s

! !4s
! ~!4s+2! rid! 2s[(J2 rsi2) 1/2+J] 2scos(sn) + [(J2 rii2) 1/2+ J]4s

(6a)

1

42rs (1 —s)
( 2 J2) 1/2

tan[s(2r/2 —0)] —s ~, ! ~0! & J,

1

42rs (1 —s)—Imp(~ co) =
(J2 2) 1/2

J
2s[(J2 ~2) 1/2+ J]2s Sjn(g&)

! co!'+2!co!'[(J'—m') '/'+ J]"cos(s2r)+ [(J'—co') '"+Jl"
(6b)

0,

where 0=tan '[(co —J ) '/ /J].
In Fig. 1 we show —Imp(rsi) for two diA'erent values of J and various values of s. As is easily seen, the curve ap-

proaches the vertical axis near m=0 as s goes to zero. For s 0, which implies the system is just at the critical point,
we obtain from Eqs. (6a) and (6b)

lim —Imp(+ co) = '
s 0

+ —' (J —co ) ' /J, ! ~si! & J,
,0, ! co ! & J, (7a)

1

4z
lim Re@(co) =

s 0
1

4n

(J2 2) 1/2 (J2 2) 1/2+ J
J

(J2 2) 1/2 ——0 —1, !co!&J.J 2

(7b)

Since the function —Imp(ro) has a discontinuity at
!

co =0, by the Kramers-Kronig relations the real part has
a singularity at this point, i.e., as co 0, Re@(co) tends
to —(4sr) ' ln! co! . This agrees with the result obtained
by Suzuki. ' Interchanging the order of taking the lim-
its we have lim, olim OReg(co) =g, . For co ~, we
have Re@(co) =O(co ).

To solve the time-evolution problem, that is, to obtain
the relaxation functions of M„and &0, we have to apply
the inverse Laplace transform X ' to Eq. (4) or (5).
Practically, this is too difficult, and so we shall center our
discussion in the following way to avoid this difficulty.
First, we write Eq. (4) as the new quotient of the hyper-
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FIG. l. —Imp(+co) vs frequency. (a) and (b) correspond
to J=1 and 8, respectively.

FIG. 2. The relaxation function "(t), the numerical solutton

of the integral equation (9). (a) and (b) correspond to J= I

and 8, respectively.

geometric functions:

1 s J F(1+s/2, 1
—s/2;5/2; —J /z )

z 3 z F(s/2, 1
—s/2;3/2; —J2/z ~)

In the above, we may set s appearing in the argument of
the hypergeometric functions to be 0, because we are
only interested in the critical behavior of the system near
the critical point s=0. This approximation means that
one can simply neglect s in the continued fraction Eq.
(1), since [(4n+1)/2n(2n+1)]s in A„with any n ) 1 is
small compared with 1. Using the convolution property
of L ', we can construct an integral equation " which is
called the second Voltera integral equation. It is given

by

H& [J(t —u)]:-(t)+s—„du =(u) = I,
2 "o t —u

where H~(t) is the Struve's function. ' We illustrate the
t dependence on =(t) for two different values of J and
various values of s in Fig. 2.

The asymptotic expansion of the inverse transform
' of Eq. (4) or (5) consists of three parts, which are

given by the integ rais along the branch cuts whose

(10)

We can also calculate the random forces together with

the response function of the exchange energy. The re-
sults will be published elsewhere.

For any realistic Ising-type system, the Hamiltonian
can be represented by two parts, the usual TI Hamiltoni-
an and the remaining interaction terms, e.g. , non-

thou h thenearest-neighbor spin-spin coupling. Even t oug e

branch points are z=iJ, z= —iJ, and z=o. In general
the contribution of branch points z=iJ and z= —iJ is
expressed as an infinite series. ' Then one may expect
that the contribution from these branch points decreases
faster than the part coming from z=O. Therefore, we
consider only this part in Eq. (4). It is uniquely repre-
sented as a(s) '+ ' with lim, oa(s) =1. Correspond-
ingly, we find that the long-time tail of the relaxation
function is given by

:-(t)—I/t ".
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latter is sufficiently small compared with the former, a
critical behavior of the system cannot be characterized
by any divergence but only by a sharp maximum. So
far, the present study is only at zero temperature
(T=O). On the other hand, when PJ ~

e
~

is large, we

may write the inverse static susceptibility approximately
as

s = —1/(1 —2a)ln [ e J, (1 1)

with a =e ~ ~ '~. Further, other temperature-dependent
terms appearing in the calculation of A„, Eqs. (3), can be
neglected compared with the s-linear terms when
e " I'I is smaller than —1/ln

~
co ~. Therefore we can

replace s in Eqs. (4) and (5) by Eq. (11)at low tempera-
ture.

If the static susceptibility of a given substance is
sufficiently large, i.e., s is small, we expect that the
present results can be applied to analyze low-tem-
perature dynamical properties of the substance.
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