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Observation of Extremely Large Quadratic Susceptibility at 9.6-10.8 um
in Electric-Field-Biased Al1GaAs Quantum Wells
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We have observed an extremely large second-order susceptibility for second-harmonic generation of
9.6-10.8-um radiation due to intersubband transitions in electric-field-biased GaAs quantum wells. For
92-A GaAs wells with 309-A Alg4sGaos2As barriers under a bias of 36 kV/cm, the peak value of the sus-
ceptibility was 28 nm/V, 73 times larger than for bulk GaAs. The magnitude and sign of the susceptibil-
ity depend on the bias field, and are in accord with theoretical predictions.

PACS numbers: 42.65.Ky, 73.20.Dx, 78.65.Fa

Transitions between the subbands of an isolated quan-
tum well have extremely large oscillator strengths.'
Strong infrared absorption features associated with tran-
sitions between the lowest two subbands in a GaAs quan-
tum well have been observed by several groups.'™ Since
nth-order nonlinear susceptibilities are proportional to
the product of n» +1 dipole matrix elements, strong non-
linear effects can also be expected.*”’ As even-order sus-
ceptibilities vanish in structures with inversion symme-
try, finite second-order susceptibilities can only be ob-
served if the symmetry of the conduction-band potential
is broken through either the growth of an asymmetric
well or the application of an external bias field. We re-
port here on the first measurement of the second-order
susceptibility of a quantum well biased with an external

field. The measurements of electric-field-induced
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second-harmonic generation of the 9.6-10.8-um output
of a CO, laser in modulation-doped AlGaAs quantum
wells are in accord with theoretical predictions.

To calculate the nonlinear susceptibilities, we need the
energy eigenvalues and dipole matrix elements for an
electron in a quantum well under an applied electric
field. The wave function is the product of a Bloch func-
tion, a plane wave in the plane normal to the layers
(L2), and an envelope function y that depends only on
z. Assuming vertical transitions between the subbands
and unity overlap of the Bloch functions,' we need only
consider the dipole matrix elements and energies of the
envelope functions. The expression for the nonlinear po-
larizability for second-harmonic generation a‘® is then
the same as that given in Ref. 8 for transitions between
discrete states,
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where <Z,‘j> =<l//i }Z | l[/j), Qjj =(E, "EJ)/fl, 1/‘}’,’j is the
dephasing time, and e is the magnitude of the electronic
charge. We have assumed that only the lowest subband
is thermally populated. In the low-density limit, the non-
linear susceptibility x® is given by 1@ =Na®, where
N is the number density of conduction electrons. Since
at least one of the matrix elements in each term vanishes
if the states are of definite parity, the magnitude of the
nonlinearity depends strongly on those matrix elements,
forbidden at zero field, that are induced by the bias field.

For a well of depth Uy and width L centered at z=0,
under a bias electric field FZ normal to the well, the en-
velope function y, obeys H(z)y,=E,w,, where we take

the effective-mass Hamiltonian to be

2

H(z) a4 +U(z)+eFz. )
For |z| <L/2, U(z) =0 and the effective mass m,(z)
=m,,, while for |z| >L/2, U(z) =U, and m,(z) =my,.
While the Schrodinger equation obtained with this Ham-
iltonian is readily solved numerically, insight into the
effects of the bias field on the optical properties of the
system can be obtained from an approximate solution of
the infinite-well (Uy— ) model. For this analysis, it is
useful to introduce a characteristic confinement energy,
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Eo=n*h?*2m,L? and a dimensionless measure of the strength of the bias field, ®=eFL/nE,. For the range of bias
fields applied in this experiment, it is adequate to treat the electric field as a perturbation. In this case, we can obtain

wave functions correct to first order in @ °:
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for n odd, and the same expression with cos and sin
interchanged for n even. {=nz/L is a dimensionless
length. The energy eigenvalues accurate to second order
in @ are
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The dipole matrix elements are necessary for the cal-
culation of the optical properties of the quantum well.
The allowed matrix elements in a symmetric square well,
i.e., those between states of opposite parity, have been
given previously as'
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where we have neglected a correction proportional to ®2.
From Eq. (3) we can obtain the dipole matrix elements
that are disallowed at zero field, i.e., those between states
of the same parity: for m=n,
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and the negative of the latter expression for m,n even.
Despite the derivation of Egs. (3) and (4) as expansions
in powers of ®, the dipole matrix elements calculated
with Egs. (5) and (6) agree to within several percent
with numerical calculations for ® on the order of 1
(fields of 200 kV/cm for a 92-A GaAs well).'°

For wells of finite depth, the wave function spreads
into the barrier region, and the above analysis is no
longer valid. For the purpose of discussion, it is ade-
quate to use the effective-width approximation,'' where
we replace L in the expressions for the infinite well with
L., where L, is chosen to yield the correct ground-state
energy for the finite well at zero bias. For a 92-A GaAs
well, with Alg43Gags»As barriers, we take the materi-
al parameters at 80 K to be m,, =0.067mo, mp =0.107
X m,'? the direct-bandgap energy E;.w=1.507 eV in the
well'> and E,,=2.163 eV in the barrier,'>!
and the conduction-band discontinuity as 0.63(E,,
—Eg.)."> With these parameters, we find that the
ground-state energy of the unbiased well is 38 meV, re-
sulting in an effective width of L, =122 A. The quanti-
ties of interest for the calculation of optical properties
can then be obtained by scaling the infinite-well results
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by L./L =1.32. These scaled values, followed by the re-
sults from numerical solutions, are £;=38 (38) meV,
E;=152 (152) meV, E3=342 (332) meV, {(z,p) =22
(22) A, {z53)=—24 (—24) A. For a bias field of 36
kV/cm, we find <Z|3>=0.74 (0.74) A, <Z1|> —<222)
=—-39(=37).

With Egs. (5) and (6) for the dipole matrix elements
and Eq. (4) for the eigenvalues, we can evaluate Eq. (1)
for the nonlinear susceptibility. Consider a well with
three bound states. The peak in the nonlinear suscepti-
bility at 20 =03, (Aw=152 meV for our example) is
dominated by the n=2, m=3 term of Eq. (1). Consid-
ering only this term, we have with Eqgs. (4) and (6)
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Taking N=5x10"" cm 73, Ay;3=7.5 meV, and F=36
kV/cm, we find Na@Qo=03,)=2.4x10"% m/V. For
comparison, the nonlinear susceptibility of bulk GaAs, a
highly nonlinear material, is {3 =3.8x10 "' m/V.!6
From Eq. (7) it can be seen that the nonlinearity is in-
versely proportional to the square of the effective mass of
electrons in GaAs, reflecting the fact that the size of a
quantum well in resonance with a photon of a given ener-
gy increases with decreasing effective mass. The non-
linear susceptibility is also inversely proportional to the
linewidth of the resonant transition. The magnitude of
the discontinuity in the conduction band does not appear
in the expression, as might be expected in the effective-
width approximation. Finally, we note that the magni-
tude and sign of the nonlinear susceptibility are propor-
tional to the applied bias field.

While the simple Hamiltonian in Eq. (2) is useful for
a qualitative discussion of the nonlinear susceptibility,
the nonparabolicity of the conduction band must be in-
cluded in quantitative calculations.!” We approximate
the nonparabolicity with an energy-dependent effective
mass defined by h%k?/2m(E)=E (k), chosen to agree
with the quartic dispersion relation for GaAs given in
Ref. 12. The reduction in the energy of the eigenstates
caused by the nonparabolicity affects the magnitude of
a® both by shifting the location of the resonances, and
by reducing the magnitude of the dipole matrix elements
by reducing the barrier penetration of the wave func-
tions. For our 92-A example, E; shifts by 42 meV,
significantly reducing the separation of Q;; and Q3,/2,
approximately doubling a @ (w = 3,/2).

The magnitude of the intersubband nonlinearity can
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be obtained experimentally from a measurement of
electric-field-induced second-harmonic generation. We
used a sample grown by molecular-beam epitaxy in a
Varian Gen-II system. A 0.5-um, n=2%10"-cm ~3-
doped GaAs buffer layer followed by fifty periods of the
superlattice was grown on a 500-uym, n=7%10"'%-cm ~3-
doped substrate. A period of the superlattice consists of
a 309-A Alg4sGagsyAs barrier and a nominally 92-A
GaAs well. The center 132 A of the barrier is doped at
6%10'7 ¢cm 73, while the well is undoped. The structure
is capped with a 1.3-um GaAs layer, the first 500 A of
which is doped at 1x10'® ¢cm ~3, the next 0.75 um at
2x10'" ¢cm 73, and the top 0.5 ym at 2x10'® ¢cm 3.
The dopant in all layers is silicon.

The sample was first characterized by infrared absorp-
tion measurements on a Digilab FTS-40 Fourier-trans-
form infrared spectrometer. The wafer was oriented at
Brewster’s angle in a beam polarized in the plane of in-
cidence. At 80 K an absorption line was observed at 112
meV with FWHM of 5 meV. The integrated absorption
strength was 0.50 as large as predicted from the theoreti-
cal oscillator strength, which is accounted for in the
remainder of the calculations by using a similarly re-
duced effective doping density. Measurements of the
much weaker absorption of the 1-3 transition have not
yet been obtained.

The transition energies and dipole matrix elements
were calculated by numerical solution of Eq. (1) with a
quartic dispersion relation, including a first-order pertur-
bation calculation of the energy shift due to band bend-
ing. The macroscopic susceptibilities, related to the po-
larization £ by {£%“) =y W(E2%) + y @ E)?, where the
angular brackets indicate averaging over one period of
the structure, were calculated in a self-consistent field
approximation'® carried out to second order in the ap-
plied fields. Many-body effects were neglected, and the
numerical calculation was simplified by neglecting cou-
pling of the different subband transitions. The major
differences between this calculation and the simple result
¥@ =Nfa®, where f is the fraction of the structure
filled by the quantum wells, are a blue shift of the reso-
nances, and an overall reduction in the magnitude due to
the difference between the bulk linear susceptibilities of
the well and barrier. The magnitude of the second-order
susceptibility for F=36 kV/cm, calculated with the
empirical values for Q3 and 7, the theoretical value
for Q31, and Ay3; =7.5 meV, is plotted versus fundamen-
tal frequency in Fig. 1.

The harmonic generation measurements were made
with a grating-tuned, rotating-mirror, Q-switched CO,
laser focused to a spot of approximately 50 um diameter
at the sample. The laser output was typically a train of
200-ns-long pulses with a peak power of 1 kW and a
100-Hz repetition rate. The bias voltage was applied
every other laser pulse, and the second-harmonic output
was monitored with a boxcar integrator operated in an
active baseline-subtraction mode, so that only the portion
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FIG. 1. Calculated nonlinear susceptibility for second-

harmonic generation y® as a function of the energy of the

fundamental photon. Squares are experimental measurements.

of the second-harmonic radiation that depended on the
applied voltage was measured.

The total second-harmonic output is the coherent sum
of the contributions from the quantum-well layer and the
substrate. For a fundamental beam propagating at an
angle 6 to Z, it can be shown that the total second-
harmonic power generated in the sample P, is given by

Prox P2 | Ay$3 + By 3 lcos(0)p—ty1] 2, ®)

where A and B are possibly complex geometry-dependent
factors, ¢ is the ratio of the transmission coefficients for
radiation polarized normal and parallel to the plane of
incidence, and ;{1(3) is the nonlinear susceptibility of bulk
GaAs. ¢, the angle between a [100] axis of the crystal
and the intersection of the plane of incidence with the
surface of the wafer, and 7, the angle between the funda-
mental electric field and the plane of incidence, are as-
sumed to be small. As can be seen from Eq. (7), to first
order ;(3? is proportional to the applied bias field F. It is
then clear from Eq. (8) that P, is a quadratic function
of the bias voltage V and that the minimum of the para-
bola shifts linearly with ¢ and 7.

P,, was measured for several wavelengths as a func-
tion of V at ¢ =y=0. The expected parabolic depen-
dence is obeyed, with wavelength-dependent curvature
reflecting the dispersion of 239, The minima of the par-
abolas fall at V=Vy= 3 V, rather that at =0 as pre-
dicted by Eq. (8). That V) is the same for all the wave-
lengths suggests that the shift is a result of built-in
asymmetry in the well, rather than misorientation of the
sample or imperfect polarizers. We note that measure-
ments of the quadratic Stark shift of the 1-2 transition
showed a similar offset.'® Repeating the measurement of
P,, vs V for several values of y at a fixed wavelength
showed a linear dependence of V' on 7, as predicted by
Eq. (8). For fundamental wavelengths close to the ab-
sorption peak, deviations from the parabolic dependence
of Py, vs V, attributed to the Stark shift of the peak,
were observed at high bias fields.
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To extract an absolute value for )53(§), P,, was normal-
ized to the second-harmonic power generated at room
temperature in a 110-um-thick undoped GaAs plate
mounted in the same apparatus. The connection of the
second-harmonic generation in the quantum-well layer to
the nonlinear susceptibility is complicated by the reso-
nant birefringence and dichroism, and the subwavelength
thickness of the layer.?® The linear index of refraction
data necessary for the calculation were estimated from a
Lorentzian model fitted to the absorption spectrum. The
experimental values for ;53(3) plotted in Fig. 1 are ob-
tained at F =36 kV/cm. The agreement between the ex-
perimental data and the model is reasonable in view of
the uncertainty in the device parameters and AlGaAs
material properties, the unknown energy and linewidth
of the 1-3 transition, and the neglect of many-body
effects.

The largest value of ¥ ®, measured at a fundamental
wavelength of 10.8 um, is 28 nm/V, 73 times larger than
for bulk GaAs. This susceptibility is among the highest
measured for any material, and is typical of the large
second- and third-order effects, e.g., sum and difference
frequency generation, electro-optic modulation, dc and
optical Kerr effect, that can be expected in intersubband
transitions. The control of the sign and magnitude of
2® through the bias electric field suggests novel device
geometries; e.g., a periodic bias electrode could be used
to induce a periodic sign alternation in y® for quasi-
phase-matching nonlinear interactions.?! The utility of
these nonlinearities for most optical devices, especially
those involving nonlinear frequency conversion, will de-
pend largely on the ratio of the pertinent nonlinearity to
the absorption coefficients, which could be considerably
improved by working in the vicinity of a weakly allowed
transition well separated from the allowed transitions.
More complete data on the absorption spectra and ma-
terial parameters are necessary for the evaluation of the
potential of these structures for device applications.
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