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Transition between Incompatible Properties: A Dynamical Model for Quantum Measurement
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We use an electronic four-level model, optically prepared in a coherent superposition of energy eigen-
states, to discuss the dynamics of a measurement process leading to the preparation of pure energy
eigenstates. The coupling strength to the environment (test laser) is found to control the speed at which
information can be gained. An explicit detection strategy is given which can be evaluated as regards its
average error probability. The model helps to clarify the conditions under which axiomatic measure-
ment theory (i.e., the collapse of the wave function) applies; it also gives some clues on the recently re-
vived discussion on "quantum jumps. "

PACS numbers: 03.65.8z, 42.50.—p

There has recently been a growing interest in the prop-
erties and observation of individual quantum systems.
This type of investigation, motivated by a number of am-
bitious experiments, ' promises to give new insight into
old and still controversial questions: It provides a testing
ground not only for the predictions of quantum theory,
but even for certain interpretations thereof. A striking
example is the revived discussion on "quantum
jumps, " ' which stresses the stochastic nature of quan-
tum processes despite the continuous dynamical evolu-
tion of the respective density matrix. We thus felt en-
couraged to reexamine a fundamental problem of quan-
tum mechanics: The sequential measurement of incom-
patible observables 2, 8, the operators of which do not
commute.

Quantum measurement defines a class of interaction
processes between the subsystem to be measured and its
environment. '" So-called measurements of the first
kind ' can be identified with a preparation process
which, according to axiomatic measurement theory, ' is
reduced to a mere definition of the operators A (B), in
the eigenstates of which the system is prepared (mea-
sured). A sequence of two such processes models the
way in which the state of quantum objects can be mani-
pulated.

This generally accepted concept, which is at the heart
of the interpretation of quantum mechanics, has a num-

ber of serious deficiencies: (I) It is not constructive, i.e.,
it does not give any hint on how the system-environment
interaction should be designed in order to have 8 mea-
sured. This question is usually related to the destruction
of coherence in the measurement basis. ' ' (2) It is not
dynamical, i.e., there are no statements as to how a
correlation between the object state and the detector
evolves in time, and (3), nothing can be said about possi-
ble limits or systematic sources of errors in analyzing
this correlation as regards its information content about
the object state.

It is the purpose of this Letter to discuss a quantum
optical model in which these deficiencies can be over-
come: We do not define the observable to be prepared or
measured, but rather the interaction from which the
physical properties and the information about these
properties will follow. This is in the spirit of Zurek': It
is the coupling to the environment which eventually
determines the properties of quantum systems. We then
demonstrate how the measurement process modifies the
physical properties of the object, and how our informa-
tion about the object, which is supposed to be complete
at the beginning, changes with time.

The energy spectrum of our electronic quantum sys-
tem, corresponding to the fixed basis

~
v), is sketched in

the inset of Fig. 1. A realization could be based on
nanostructured semiconductor materials, ' ' but more
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FIG. 1. Decay of an initially prepared periodic attractor
state (cf. text) after the test laser ii4t has been switched on.
The matrix elements p„ in the diagonal representation

~
v), are

shown. Inset: The level scheme and the relevant couplings for
this measurement step. The transition matrix elements are
taken to be proportional to the overlap of the respective wave
functions, the localization of which are indicated by the exten-
sion of the horizontal lines. The delocalized level 3 is needed
for the preparation of the initial state (cf. text).

likely on a molecular or atomic system. ' For our
present purpose it is essential that, because of selection
rules (based on symmetry or diAerent localization behav-
ior), the optical transitions are basically of two types, ei-
ther allowed, with spontaneous decay rate w =w3( w3$

w34 w4) or "forbidden, " with rate wd =w2~ =w42
« iv (time scale spreading). For what follows we will as-
sume resonant interactions; the results can easily be gen-
eralized to include nonzero detuning. To describe the
dynamics of the electronic system, we use a master equa-
tion approach, in which the background radiation field
has been traced out.

At any instant of time, the density matrix of our ob-
ject in its N-dimensional Hilbert space can either be
specified by N —1 independent real numbers, defining

p,„, with respect to any j7xed complete basis
~

v),
v=1, 2, . . . , N (e.g. , the energy eigenbasis), or by N 1—
matrix elements p,„ in the (instantaneous) diagonal rep-
resentation

~
v), supplemented by the unitary transfor-

mation U(r) connecting this specific basis to the fixed
one,

~
v). Both dynamical descriptions are equivalent.

However, if we suppose that at any instant of time there
exists a complete (zero entropy) description for a single
quantum system (i.e., the density matrix has only one
nonvanishing element after diagonalization), and if we
further assume that alternative pure states are mutually
orthogonal (so that we can decide which state is occu-
pied by the individual quantum object), it is the instan-
taneous diagonal representation which allows for a sim-
ple interpretation in terms of probabilities: p.,(t) gives
the probability for the single quantum object to be in
state

~
v), . Measurement thus reduces to hypothesis test-

ing; as in classical physics, the analysis must exploit

the dynamical behavior derived from the measurement
object and its interaction with the environment. Here
four diferent classes can be distinguished: (i)

~
v) and

p„are both independent of time; (ii)
~

v) changes and
p„, is independent of time (coherent time evolution); (iii)

~
v) is stationary, while p, „changes with time (coupled

set of rate equations); (iv)
~

v) and P,„change with time.
The recent resonance fluorescence experiments' per-

formed with single atoms can be ascribed to class (iii)
with A =Ho, the atomic Hamiltonian (the interaction
with the light field will make

~
v) different from the

atomic basis, but this is not essential). These experi-
ments indicate that the individual decay of the "shelved '

state is appropriately interpreted as a stochastic point
process with a waiting-time distribution equivalent to the
constant decay rate. This process assumes that the atom
is always in one of the states

~
v), while the transition re-

sponsible for the change of p.,(t) occurs in the form of
discontinuous quantum jumps. This interpretation is
confirmed by an analysis of the two-time photon correla-
tion function ' for a stationary scenario in which the
"shelving" (or switching) laser is applied simultaneously
with the test laser inducing the luminescence: In this
case, a stochastic two-state process can be formulated for
the photon field, see, e.g. , Ref. 6.

Our present scenario belongs to the most general case
(iv). Starting from the ground state

~
1), we can prepare

a "periodic attractor state" (i.e. , a coherent superposi-
tion with respect to basis

~
v), but a single state with

respect to
~
v)) by means of two correlated laser beams

connecting state
~
1) with

~
3), and

~
2) with

~
3), respec-

tively

P„=0.5 (S,t 8, 1+6,26, 2
—6,16,P

—6,PS„ t ) .

The time period for ptq(t) is given by h(E2 Et)—
where E2 —E& is the energy diA'erence between level 2
and level l. It decays on a time scale I/wd which is sup-
posed to be long compared with the time scale of the
measurement step.

This step consists of applying now the test laser A4&

(Rabi frequency for the transition
~
1)

~
4)) to this ini-

tial state. Though the test laser cannot switch between
~

1) and
~
2) on the time scale considered, it will certainly

change the prepared state: The basis
~

v), starts to move
irreversibly, such that for large times

~
2) becomes

~
2),

while
~
1)

~
1) and

~
4)

~
4) only after, in addition,

the test laser has been switched ofI'. It is in this sense
that we can say to move

~
v) asymptotically into the basis

~
v). With respect to

~ v), the initial pure state decays
into a mixed state (cf Fig. 1). This latter behavior, rem-
inescent of that found for the class (iii) systems as dis-
cussed above, should again be simulated by a stochastic
process, implying quantum jumps.

The
~ v), could be said to define the instantaneous

measurement basis if we were able to get information
about it. The only source of information (without fur-
ther interactions) is the flow of incoherently emitted pho-
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tons, which is expected to be correlated with the elec-
tronic state. Let hypothesis H (t) denote the situation
in which the system at time t is found in state

~
2),

[which occurs with probability p22(t), see Fig. 1] and let
H ' (t) denote the system not being in

~
2), [expected

with probability 1 —p22(t)]. The corresponding norma-
ized density matrices are

p„,' (t) = [pt t(t)&,t+p44(t)&, 4] .
1 —P22(t)

We now want to decide from the photon counts, in-
t t d over the period of interaction up to the time ~egra e

(0)whether at time t =zm hypothesis H (zm) or H (zm
is true. Such an integration is necessary, as photon
counting cannot give instantaneous iniormation. For

~ this amounts to deciding essentially between theZm

s stem being in
~
2) ("dark") or in subspace

~
1,

~
4sys em

("bright").
The binary decision is now based on a reduced sto-

chastic point process defined by the following transition
rules: State p (t) with conditional probability (time-
dependent rate)

1 dao(t) =- P22(t)
P22(t) dt

or from state p
' (t) to p (t) with

1 dai(t) = P22(t),
1 —P22(t) dt

whichever of the two is positive. " As is obvious from
Fi . 1 both transitions die out for large t. Any sequenceig. , 0
of transitions within 0~ t ~ ~ defines a path i&t& =
with i (0) =0 and, by that, a realization of an instantane-

ous photon emission rate k(t) with

) (t) =w4i Tr[p'"'(t)P4],

where P4 =
~
4)(4

~
is a fixed projection operator.

The resulting photon emission process is then simulat-
ed as a doubly stocahstic Poisson point process,

P;(N, t+ht) =P; (N, t) [1 —).(t)Ltit]+P;(N —I, t))(tt)ht,

with P;(0,0) =1. P; (N, t) is the probability to observe N
p 0hotons between 0 and t ~ z on a path ending in

p
' (z ), i =0, 1. In general, more than one transition

may occur; however, as they come on a time scale close
to I/w, they cannot be resolved by photon counting.

The resulting average photon number N for samp ing
over 500 realizations k(t) is shown in Fig. 2 as a func-
tion of z . We see that the photon counting will lead ei-
ther to an N increasing with z [which is expected to
occur in 500 [1 —p22(z )] cases], or to a finite N & 0 in
the remaining cases). This should be contrasted with the
measurement of a mixed state for which N is either zero
or increasing with ~ . This statistical bifurcation, relat-
ed to a quantum jump in the electronic system, is the
basis of the following detection strategy for observing
our single quantum object:

- (0) ~NChoose hypothesis H (zm ~ tf N zm N, ,

choose hypothesis H ' (zm) if N(zm) & N, ,

where N(z ) is the number of photons counted within
the measurement interval ~ . This strategy leads to the
following error probability

Pe (zm )INc ) P22 (zm )Po (N & Nc ~ zm )

+[1—
f 22(z )]P,(N N„z ).
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FIG. 2. Average photon number N [sampled over 500 reali-
zations ),(t)] for an initially prepared periodic attractor state
(cf. text). Hypothesis H" leads to an N increasing with z
while hypothesis H leads to a finite N & O.

FIG. 3. Average error probability P, [samples over 500 real-
izations k(t)] for an initiaHy prepared periodic attractor state
(cf. text) and for various thresholds N, Also shown is P, for a.
mixed initial state [p„,(0) =0.5(8„~+tf„2)].



VOLUME 62, NUMBER 1 PHYSICAL REVIEW LETTERS 2 JANUARY 1989

The first term is the false alarm probability; the second
term is the nondetection probability. P, is shown in Fig.
3 for various thresholds N, . We see how the strategy is,
in principle, limited to finite-error probabilities, in par-
ticular for short-time intervals ~ . This is due to the
fact that for small i both hypotheses are almost indis-
tinguishable with respect to N (cf. Fig. 2). But even for
large z, P, does not approach zero (unless N, ~):
The reason is that there is always a finite probability to
observe N & N, photons under hypothesis H (z ).
This is in contrast to the same detection strategy applied
to a mixed state, prepared in the

~
v) basis: As is also

shown in Fig. 3, for this case P, asymptotically ap-
proaches zero for any N, (including N, =0).

We should remark that other detection strategies
could easily be designed and evaluated. The present
strategy was chosen in order to explicitly show the
early-time behavior. If we were interested only in the
asymptotic behavior, we might have preferred to count
photons with N, =0, but starting at a later time when
the probability to register "wrong" photons is already
small. For such an analysis, however, the diff'erence be-
tween the detection of a mixed and a coherent state
would have almost disappeared.

In conclusion, we have shown how the stochastic for-
mulation of quantum dynamics in terms of the instan-
taneous diagonal representation of the density matrix
can be used for a detailed discussion of the measurement
process of single quantum objects, prepared in a
coherent, mixed, or pure state. The early-time behavior
is significantly different for the measurement of a
coherent state as opposed to a mixed state: The former
may be said to involve quantum jumps which direct the
long-time behavior to either the "dark-" or the "light-
emitting" state. The experimental proof would consist in

finding a finite photon count N & 0 for ~ w )& 1. This
last behavior is at variance with the often made assump-
tion that the electron is in its ground state (i.e., in state

~
1) in our case) immediately after the emission of any

spontaneous photon.
Finally, the time-resolved analysis of the error proba-

bility, P„shows that the time scale on which the original
information is destroyed and new information is gained
increases as the coupling strength to the environment
(test laser intensity A4&) decreases. The minimum time
scale is set by the spontaneous decay time, I/w. Only for
large interaction times z, z w»1 (but z wd ((1),
could P, be made arbitrarily small; axiomatic measure-
ment theory describes this asymptotic behavior, i.e., the
collapse of the wave function.
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