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Intrinsic Localized Modes in Anharmonic Crystals
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A new kind of localized mode is proposed to occur in a pure anharmonic lattice. Its localization prop-
erties are similar to those of a localized mode for a force-constant defect in a harmonic lattice. These
modes, which are thermally generated like vacancies but with much smaller activation energies, may ap-
pear at cryogenic temperatures in strongly anharmonic solids such as quantum crystals as well as in con-

ventional solids.

PACS numbers: 63.20.Ry, 63.20.Mt, 63.20.Pw, 67.80.Mg

The dynamics of localized modes associated with de-
fects in impure harmonic crystals is now fairly well un-
derstood.! Depending on the defect mass and the bond-
ing to the host neighbors, a spatially localized mode may
occur at a frequency above or in a gap in the host vibra-
tional spectrum. For the weak-bonding case, low-fre-
quency resonant modes? may appear as well. In this pa-
per we describe a different kind of localized mode which
can occur at finite temperatures in pure crystals with
sufficient anharmonicity. Although it takes more
thermal energy to produce and excite these localized vi-
brations than to excite plane-wave anharmonic phonon
modes of the crystal, these intrinsic nonlinear modes are
spatially localized and can appear at any lattice site. Be-
cause of this inherent disorder, a configurational entropy
term is associated with their appearance. Since the crys-
tal free energy depends on the difference between the
creation energy and the entropy contribution, these in-
trinsic defects (like vacancies) become possible at elevat-
ed temperatures and must be considered in a complete
thermodynamic description of the anharmonic crystal
properties.

Let us consider the situation for localized modes when
a defect space is characterized only by a local force-
constant change in the perfect harmonic lattice of N
atoms. If the local force constant is much larger than
that of the host, then the highest-frequency mode of the
perfect crystal at w, is transformed into a high-fre-
quency local mode at w;, whereas in the opposite limit a
low-frequency resonant mode occurs at w, near the bot-
tom of the phonon frequency band. For the nearest-
neighbor force-constant model in both the high- and
low-frequency limiting cases, the defect mode of interest
can be described by an Einstein oscillator.>3 Hence, the
mean square displacement of an atom with mass M at

site n can be written generally as
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in which j; , and j are indices characterizing the Einstein
oscillator at frequency @;, corresponding to the extreme
local (/) or resonant (r) mode and the quasicontinuous
eigenstates at frequencies w(j) of the dynamical ma-
trix,' respectively. Boltzmann’s constant is denoted as
kg and the temperature, T. The shape function &,(v)
(v=j,ji.,) is the product &,(v)&r(v) of the eigenfunc-
tion £,(v) of the dynamical matrix.

There are two instructive limits which clarify the form
of ¢,(v), namely, the local and plane-wave cases. With
the local mode centered at n =0, the two types of excita-
tions in Eq. (1) are characterized by &(j)=0(N ")
~0 and (i) =1, and hence the mean squared dis-
placement*
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can be identified with the squared amplitude of the local-
ized mode. In the opposite case of the perfect lattice all
sites are equivalent so that £,(j;,)=0 and ¢&,(;)
=0(N~"). If we compare the root-mean-square
(RMS) amplitude of the n=0 atom for the highest-
frequency mode in the perfect crystal at o, with that of
the local mode at @y, the ratio is 1/N /2 so that the am-
plitude in a local mode is much larger than that of the
corresponding plane-wave mode from which the local
mode evolves. A similar comparison of the RMS ampli-
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tude for the plane-wave mode and that of the resonant
mode both at frequency o, gives the same ratio, 1/N /2.
If the localization is not complete, an inhomogeneous
wave still exists at some frequency 0> w, or 0 K wn,
and the RMS amplitude near the defect is O(N; '/2),
where N; (~1) is the small number of particles within
the envelope of the inhomogeneous wave, and the ampli-
tude is zero throughout the rest of the chain.*

In the anharmonic crystal, the frequency of a particu-
lar mode depends on the amplitude of the particles in the
mode. Because the amplitude is small for a plane-wave
mode but large for the localized mode, the anharmonic
contribution to a homogeneous wave solution will be
much smaller than that for a localized inhomogeneous
wave. Because the degree of localization influences the
mode frequency, the anharmonic dynamics leads to the
existence of intrinsic localized modes. In the 1D analysis
to follow, we treat only the local-mode limit since a real-
istic anharmonic resonant-mode spectrum requires a 3D
space.’

Let the anharmonic potential describing the nearest-
neighbor interactions for a one-dimensional (1D) chain
be represented by

K K
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where K, and K4 are nearest-neighbor harmonic and
anharmonic force constants, respectively. Paying partic-
ular attention to the localized mode due to lattice anhar-
monicity, we separate u, into negative- and positive-
frequency parts:

up, =alé exp(—iwt)+£y expliot)], 4)

where a and &, are the amplitude and the shape func-
tion, respectively. Using the rotating-wave approxima-
tion® to focus attention solely on terms with the factor
exp(—iwt) and limiting our discussion to stationary lo-
calized modes for which the &,’s are real, we get
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J=K/M, L=0GK4/K;)a?. (6

Note that Eq. (5) with A =0 is the conventional eigenval-
ue equation for harmonic phonons with eigenfrequencies

w2(k) =2J[1 —cos(k)], @)

where w2, =4J, and o,, is the frequency of the top of the
band w(k). The lattice constant has been set equal to
unity. In the study of the effect of lattice anharmonicity,
the conventional approach is to assume that the effect of
anharmonicity on band phonons can be treated by a per-
turbative technique or a molecular-field approximation
based on the self-consistent phonon theory’ because the

anharmonic modes have a relatively small amplitude.
Here we are concerned with localized modes lying above
the top of the band at w,, and for such a case a nonper-
turbative treatment is required from the outset. The
Green’s-function method is invoked to rewrite Eq. (5) in
terms of 1D lattice harmonic Green’s functions
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As an illustration we consider a single-local-mode
problem. Let us assume that the local mode exists at the
origin, n =0, of the 1D lattice. The solution to Eq. (9)
of interest is the odd-symmetry mode having the proper-
ty &€, =& -, with the normalization of the shape function
given by £o=1. To take account of the oscillatory na-
ture of the shape function &,, we introduce a reduced
shape function and reduced lattice Green’s function:

E=(—D"ln,, ¢ =1(-D"/02gk). a1

By use of the identity relations? satisfied by lattice
Green’s functions, an explicit expression for Eq. (9) can
be written in terms of y =(w,/®) 2 as
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for n=1, with

2/y—1=n+r0+n)3, (13)
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and
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Equations (12) and (13) constitute a set of nonlinear
simultaneous equations. For a given value of K4/K», it
gives the eigenfrequency w and the eigenfunction n,’s of
the odd-symmetry mode as a function of its squared am-
plitude a? To fix the value of a? we use Eq. (2). Al-
though, in principle, the defect space spanned by a single
odd-symmetry localized mode extends over an infinite
number of lattice sites, we now demonstrate that in cer-
tain cases this large defect space collapses to a much
smaller one.

For a localized mode lying far above the top w,, of the
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band, we have y <1 and
gm) =G/ " 1 +y/2+3pY8+ - -]
x[1+y/2+5pY16+ --- 1171 (16)

In such a case, convergence of the series in Eq. (12) is
very rapid and we need only consider a small defect
space. In this limit, putting n=1 gives 1, ~ 3, which,
when inserted back into Eq. (13), gives

(Wm/w)) =y =1/ + Erl<]1 a7

so that A> 35. If A> 57, then Eq. (17) yields the
eigenfrequency of the odd mode as a function of A. The
asymptotic expression for n, with n=2 is

e =0 1" 1/am)[2+2/2] (18)

with y <1. Thus the spatial localization of the mode is
established at least for y<1. The fact that no=1,
m=x, yet the other n,~0 is an indication that the vi-
brational character of the central atom and its neighbors
behaves as a quasimolecule which undergoes a large ex-
cursion in contrast to the rest of the host atoms.

For the three-dimensional simple-cubic anharmonic
lattice with nearest-neighbor interactions, we find the re-
sults to be essentially the same as described here for this
one-dimensional case.® Although the nonexistence of a
bound state or localized mode in a continuum 3D space
for a scalar field is well known in nonlinear field theory
as the Derrick theorem,® this theorem does not apply for
nontopological solitons in a discrete 3D space.

Except for the amplitude a, the entire calculation for
the localized-mode frequency has so far been based on
classical lattice dynamics. For the discussion of thermal
excitations of the localized mode and their bearing on
the thermodynamic properties of anharmonic solids, a
quantum mechanical treatment is required. We assume
that these points, which can be formulated by the intro-
duction of, for example, the method of the double-time
Green’s function,' carry over from classical to quantum
mechanics in the usual way.

The production of these localized modes requires the
crystal energy to be increased over that found for the
perfect crystal, but associated with the defect is crystal
disorder which gives rise to an additional configurational
entropy, S.. For a localized defect, the Helmholtz free
energy is given by

F=Fog+nf—TS,, (19)

where Fo describes the contribution from the perfect
crystal, nf is the work done in the creation of n defects,
and — TS, gives the contribution from the disorder.
Minimization of the free energy with respect to the num-
ber of defects n for the limit where n < N gives®

n= Nexp(—f/ksT) . (20)
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For the strongly-localized-mode limit, the number of
these modes present at any temperature in a sample of
constant volume is given by Eq. (20) with the free ener-
gy per defect

Ji=8e—TAs,, (21)

where Ae is made up of two terms: one from the change
in the mean vibrational energy of the spectrum and the
other from the change in the volume. At 7T'=0 K, the
zero-point local-mode spectrum is unpopulated so that
the vibrational ground state is described by a spectrum
of plane-wave modes. In the low-temperature limit, the
difference between the two vibrational configurations can
be characterized completely in terms of the extra zero-
point energy contribution required to form the anhar-
monic localized excitation spectrum. Since at low tem-
peratures As, =s(localized) —s(plane) = 0, then f; =A¢
in Eq. (20).

It is expected that these localized modes can move
from site to site so that the lattice can recover the
translational symmetry once destroyed. We now consid-
er two classes of physical systems where evidence for
these modes exists: quantum crystals and defects in al-
kali halides.

Let us first examine solid *He and *He. For these sys-
tems the present formalism based on conventional, classi-
cal lattice dynamics does not apply'®; however, if we
reinterpret the potential energy of our simple lattice as
representing an effective potential energy for the quan-
tum system,!' then some comparisons between experi-
ment and our model are possible. After the effective
harmonic potential is adjusted to agree with the experi-
mental frequencies under consideration, our results, in a
qualitative sense, may be used to describe intrinsic local-
ized modes in solid “He and 3He.

In 1962 an anomalous extra contribution to the crystal
specific heat of bcc 3He was found '>!3 that was assigned
to vacancy production. These measurements have been
confirmed and extended by others.'!> Recently, a
direct determination of the thermal vacancy concentra-
tion of *He and *He has been obtained from measure-
ments of the temperature dependence of the x-ray lattice
parameter in a constant-volume cell.'®!” One underly-
ing problem has been that the energy for vacancy gen-
eration is measured to be much smaller than the Debye
energy of the solid. Note that Eq. (20) has the same
form as for the vacancy result. In addition, the energy
required to generate an anharmonic localized mode de-
pends essentially on the energy difference between the
zero-point energies of the two different kinds of modes;
thus a small activation free energy occurs automatically.
This activated process should provide a contribution to
the specific heat in addition to that associated with va-
cancy waves'® in quantum crystals.
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The addition of point defects to anharmonic crystals is
expected to have a dramatic effect on the translational
motion of the intrinsic local modes since these extrinsic
defects would act as strain-field traps. The interplay of
the thermal energy with this combination of traps and
mode translation should give an unexpected complexity
to defect dynamics. This binding may provide a simple
explanation for the puzzling experimental result found
for Ag™ in KI where two elastic configurations'® are ob-
served to occur for this point defect at low temperatures.
We speculate that the Ag *ion is on center in the KI host
at 1.2 K only because a large-amplitude intrinsic breath-
ing mode is trapped at the impurity site. When this
anharmonic mode escapes from the defect at =20 K, the
increase in the local volume available to the Ag™ ion
permits it to move to the observed off-center configura-
tion. !

For many years workers have looked without apparent
success for experimental evidence of dramatic anhar-
monic effects in quantum crystals. Although most
anharmonic vibrational modes appear to be similar to re-
normalized harmonic modes,'? our work shows that the
anharmonicity is directly responsible for the occurrence
of intrinsic localized modes at finite temperature. Be-
cause these localized modes have a larger zero-point am-
plitude than the plane-wave modes that they replace, the
resulting activated process produces localized volume
changes in the solid. Finally, the localized strain fields
associated with point defects in crystals may attract or
repel these intrinsic localized modes.
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