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Pattern Competition in Temporally Modulated Rayleigh-Benard Convection
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Shadowgraph flow-visualization studies and heat-flux measurements were used to study convection

subjected to temporal modulation of the Rayleigh number R in the form e(t) R(t)/R,""—1 ep

+bsin(tot), where R,s™is the unmodulated threshold, and tv and t are scaled by the vertical thermal

diffusion time. For m 15 and 0.7 &8&2.0 the predicted hexagonal patterns were observed for a range
of eo immediately above the convective threshold t, With increasing eo there is a region exhibiting
coexistence between hexagons and rolls, followed by roll-like patterns. The observed boundaries between

these regions and the magnitude of the convective heat transport are consistent with theory.

PACS numbers: 47.20.Bp, 47.20.Ky, 47.25.Qv

The problem of Rayleigh-Benard convection subjected
to external temporal modulation of the Rayleigh number
R has been studied both theoretically and experimental-
ly. ' The emphasis of that work has been primarily on
the shift of the critical Rayleigh number R, for the onset
of convection. ' This shift can be obtained from the
linearized equations of motion. Its predicted value

R, (b, to) —R,""depends upon the modulation amplitude
b and frequency to, and was recently confirmed in experi-
mental work by Niemela and Donnelly. Theoretical at-
tention has also been devoted to the nature of the bifur-
cation at R, and to the convective pattern above onset.
These are nonlinear aspects of the problem. For convec-
tion in a fluid which satisfies the Oberbeck-Boussinesq
(OB) approximation, it is known9 that the bifurcation at
R, is supercritical and that the pattern immediately
above onset in a laterally infinite layer consists of
straight, parallel rolls when R is held constant. In a
non-OB system, where one or more fluid properties are
significantly temperature dependent, the bifurcation is
subcritical and a hexagonal pattern is stable immediately
above onset. ' ' A hexagonal pattern can also be sta-
bilized in an OB fluid by subjecting the system to a
time-dependent top and/or bottom temperature. ' In
that case the nonlinear temperature profile of the con-
duction state plays much the same role as the tempera-
ture variation of the fluid properties in the non-OB case
in that it breaks the symmetry between the regions of
upflow and downflow. Krishnamurti ' has shown

theoretically and experimentally that hexagons can be
generated by steadily increasing or decreasing the top
and bottom temperatures simultaneously as functions of
time. Roppo, Davis, and Rosenblats (RDR) have pre-
dicted theoretically that these effects can be created by
external temporal modulation of the temperature
difference across the fluid layer. This case has the ad-
vantage that it permits the experimental investigation of
a stationary state. The theory of RDR involved a pertur-

bation expansion in the amplitude b, whose validity was
shown to be limited to the range b/to =0.06. Recently,
two of us (P.C.H. and J.B.S., hereafter referred to as
HS), derived a thirteen-mode Lorenz model, whose
solution confirmed the qualitative prediction of RDR,
but which was not limited to small values of 8, where the
stability range of hexagons is unobservably small. An
important conclusion of HS was that there is an optimal
frequency range for observing hexagons, since their sta-
bility region vanishes not only for co , but also for
co 0. It is the absence of this feature which makes the
results of perturbation theory qualitatively incorrect at
low frequency.

In this Letter we report on experimental observations
of hexagons in Rayleigh-Benard convection subjected to
external temporal modulation. We observed regions in

parameter space exhibiting pure hexagonal patterns and
pure roll patterns. Their boundaries are consistent with
those predicted by HS. However, in the region where
the model predicts bistability and hysteresis we observed
a nonhysteretic coexistence between hexagons and rolls.

A special apparatus for achieving large-amplitude
modulations was built. The working fluid was water
near 51'C, with a Prandtl number equal to 3.6. We
used an acrylic sidewall with height d 0.350 cm and an
inner diameter of 7.70 cm. The top plate of the cell was
made of sapphire and held at 50.6'C by a temperature-
controlled bath. The bottom plate was made of copper
with polished nickel on its upper surface, for use with the
shadowgraph flow-visualization technique. ' A heater
was embedded in the bottom of the copper plate. A
0.05-cm-thick acrylic plate was epoxied to the bottom of
this plate, providing a thermal resistance between it and
a heat-sinking bath in contact with the lower surface of
the acrylic. This bath was maintained at 14.3'C, and
both baths were held constant to within 0.002 C. By
applying a large heat current to the bottom plate, we
could raise the temperature of the plate to its desired
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mean temperature. Then, by our modulating the heat
current about its mean value, substantial modulation of
the temperature of the bottom plate could be achieved.
The range co6 ~ 30 can be explored with this design.

The experiment involved our modulating the heat
current sinusoidally, resulting in

Ep+ csin(cp8) + (higher harmonics),

where R(t) is the instantaneous Rayleigh number based
on the temperature difference AT(t), and R,'" is the un-

modulated convective threshold. The frequency cu and
the time t are scaled by the vertical thermal diffusion
time d /x, where x is the thermal diffusivity of the fluid.
Here we report on results for co 15, a frequency that
was sufficiently low that hexagons are predicted to be
observable and sufficiently high that the stochastically
induced, irreproducible patterns seen under low-fre-

quency modulation do not occur.
The theoretical bifurcation diagram ' ' relating to

hexagon-roll stability near onset in a laterally infinite
system is shown schematically in the inset of Fig. 1. A
positive threshold shift changes the convective onset from
co=0 to co=a, . Immediately above e„roll patterns,
which appear through a supercritical bifurcation, are un-

stable to hexagonal patterns. This continues as eo is in-

creased until eo=ez, beyond which rolls are stable. The
hexagons appear through a subcritical bifurcation, first
becoming stable at ep a~ (e, and continuing to be
stable until eo ez & e~, where they become unstable to
rolls. For eg ~ so& eg both hexagons and rolls are
linearly stable. While this bistable region is large and
observable, the region e~ ~ co& e, is predicted to be
small, s and we were not able to detect it. The thresholds

EJt, and en predicted by HS for rp 15 are shown as
functions of 8 in Fig. 1 as solid lines.

During the course of each modulation cycle, the pat-
tern became visible and then faded from view. After a
sufficient number of cycles, the patterns which appeared
in successive cycles became indistinguishable. Figure
2(a) is a shadowgraph image of the central portion of
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FIG. 1. Stability limits in the ep-8 plane for modulated con-
vection with co 15. The solid curves show the predictions (see
Ref. 6) of the Lorenz model for e„en,and ea. The open cir-
cles are our experimental measurements (see Ref. 15) of e„
while the solid circles show the locations of the images in Fig.
4. Inset: Theoretical bifurcation diagram showing schemati-
cally the convective current averaged over a cycle, j "", as a
function of the mean of the reduced Rayleigh number ep. The
dashed lines represent unstable solutions. Modulation shifts
the convective threshold from ep 0 to ep=e, . Hexagonal flow

occurs through a subcritical bifurcation and is stable for
e~ ~ ep & eg. The bifurcation to rolls is supercritical, but rolls
are stable only above e&. Note that the definitions of e&, e&,
and ez used here differ from those of Ref. 6 by the overall ad-
ditive constant e,.

(b)

FIG. 2. (a) Shadowgraph image of a hexagonal convection
pattern achieved with modulation parameters m =15, 8=1.97,
and ep 0.20. The bright regions show downflow at the center
of the hexagons, while the dark regions show upflow along their
outer boundaries. (b) Low-wave-vector portion of the Fourier
transform of the image in (a), demonstrating the sixfold sym-

metry of the pattern.
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such a steady-state pattern under conditions where hexa-
gons are stable (ro 15, b =1.97, po 0.20). This image
was taken close to the time when the pattern intensity
reached its peak. The bright regions show downflow in
the center of the hexagons, and the dark regions show
upflow along their outer boundaries, confirming the
direction of flow within the hexagons predicted by
theory. Figure 2(b) displays the low-wave-vector por-
tion of the Fourier transform of the image, clearly
demonstrating the sixfold symmetry of the pattern.

We determined e, from heat-flux measurements, ex-
amples of which are shown in Fig. 3. The average over
one cycle of the part of the heat current attributable to
convection, j "", is plotted as a function of po (j"""is

scaled by the critical heat current for the onset of unmo-
dulated convection). Static heat-flux measurements are
shown as open circles, and the solid line through the
points is the prediction of the model for b 0, with a
small adjustment of the slope to account for the finite
geometry. Points from measurements taken under mod-
ulation with cn 15 and b 1.97 are plotted as solid cir-
cles. The threshold was determined by our fitting a line
through the points where, within our resolution, j"""ap-
pears to increase linearly with ao and then extrapolating
this line to the point'5 where j "" 0. Measurements of
e, for other values of 8' are shown as open circles in Fig.
1. They are seen to be consistent with the model within
our possible systematic errors. '

In order to explore the stability limits of the hexagons
and rolls, we performed an experiment in which we start-
ed with ao —0.2 and incremented eo in steps of approx-
imately 0.02. For each value of co we modulated with
ro 15 and b 1.97 for forty cycles, a number adequate
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to achieve a steady state. In the fortieth cycle we took
an image of the pattern at its peak intensity in the cycle.
At the end of this cycle we immediately increased eo and
resumed the modulation without loss of temporal coher-
ence with the previous cycles. The heat-flux measure-
ments plotted in Fig. 3 were obtained from this experi-
ment, and the solid lines are the predictions of HS with
the results for both hexagons and rolls shown whenever

they are stable. The theoretical curve, which has no ad-
justable parameters, is seen to agree well with the data
in the pure hexagon (p, ~ eo ( eg) and pure roll

(fp & a'g) regions. In the bistable region (eg ~ cp ( pg)
the model predicts either hexagons or rolls, depending on
initial conditions, but not both. However, the experi-
mental heat-flux data do not reveal this hysteresis loop.

The actual patterns observed can be seen from the im-

ages in Fig. 4, which correspond to parameter values
shown as solid circles in Fig. 1. Pattern 4(a), taken in

this region where only hexagons are predicted to be
stable, is essentially hexagonal with some defects and
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FIG. 3. The convective heat current averaged over one cycle
vs ep. The open circles are from static measurements (8 0).
The solid circles show the measurements from a modulation
experiment with co 15 and b 1.97. The solid curves are the
prediction of the Lorenz model (see Ref. 6). Only stable states
are shown. Note the small hysteretic loop immediately below
&c.
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FIG. 4. Images of convective flow patterns for co=15,
1.97, and (a) ep 0.21, (b) 0.25, (c) 0.29, (d) 0.32, (e)

0.36, and (f) 0.40.

949



VOLUME 61, NUMBER 8 PHYSICAL REVIEW LETTERS 22 AUGUST 1988

distortions which we believe to be due to the geometrical
constraint of circular sidewalls. Pattern 4(f) is the cor-
responding one for rolls, whereas patterns 4(b)-4(e)
show clear signs of spatial coexistence of hexagons and
rolls. ' The corresponding heat-flow measurements are
shown in Fig. 3. They fall on a smooth curve connecting
the value of j ""at e~ to that at ep. This behavior con-
trasts with that found in previous work on non-OB con-
vection, ' where the hysteresis loops between ez and es,
as well as between e~ and t.„wereclearly observable in
heat-flux measurements. Since the Lorenz model
developed by HS does not allow for spatial variations, it
is inadequate for studying the coexistence of hexagon
and roll patterns, and further work is required to address
these interesting questions.

In summary, we have presented quantitative data
showing that temporal modulation allows one to control
the pattern of convection near onset over a substantial
experimental range. The phenomena can be analyzed
with use of a simple model obtained from hydrodynamic
equations with no adjustable parameters.
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