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Dichotomy of the Hydrogen Atom in Superintense, High-Frequency Laser Fields
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We study the behavior of atomic hydrogen in a monochromatic radiation field of high frequency co

and high intensity I, when its structure depends only on the parameter ao I' co a.u. , and when mul-

tiphoton ionization is quenched. At large ao the ground-state binding energy undergoes a drastic reduc-
tion. This is coupled to an unprecedented stretching of the (oscillating) electron wave function, cul-
minating in its separation into two parts (dichotomy) for ao & 50 a.u.

PACS numbers: 32.80.Wr, 31.20.Di

ts (t ) =ape sin(tot ), ap = —(ea/mcco), (2)

represents the quiver motion of a classical electron in the
field. In atomic units (Bohr radii)

a =I' coap — co (3)

where I is the (time-averaged) beam intensity. Equation
(1) characterizes, in fact, the dynamics in a moving
frame of reference which follows the quiver motion of
the classical electron, and which we shall call the "Kra-
mers reference frame. "

By application of the Floquet method of solution,
Eq. (1) was cast into a system of coupled differential

Impressive advances in laser technology have made
possible the generation of high-frequency radiation, in
the uv and beyond, of extreme intensity, in some cases in

excess of I a.u. In=3.5&10' W/cm . ' A nonperturba-
tive high-frequency theory was recently developed by
Gavrila and Kaminski2 to study electron-atom scattering
in such fields. The formalism has been extended since
to cover atomic structure and ionization under similar
conditions. We now present the first accurate calcula-
tion within the theory for the structure of atomic hydro-
gen. '

We assume that the radiation can be represented by a
monochromatic plane wave (frequency co), linearly po-
larized (real polarization vector e), and take the electro-
dynamic potentials in the dipole approximation A=tte
xcos(cot), p=0. The semiclassical Schrodinger equa-
tion in the momentum gauge, describing the interaction
dynamics in the laboratory frame of reference, was
transformed by Kramers (see also Henneberger) into
the form7

I(1/2m)P +V[r+a(t)lly=ii't By/Bt,

by applying the time-dependent translation r~ r+a(t)
Here V(r) is the atomic potential and

equations in coordinate space for the Floquet com-
ponents of the wave function e, containing a (in general
complex) quasienergy parameter E. The system was
supplemented by appropriate boundary conditions to de-
scribe the steady decay by multiphoton ionization of an
initial state in the geld. An iterative procedure of solu-
tion was devised, valid at sufficiently high frequencies.
To lowest order in the iteration (the high-frequency lim-

it), the set of differential equations reduces to a single
one

[(1/2m)P2+ Vp(ap, r)] yp =Eyp,

for the zeroth Floquet component yp, and y(r, t)
—= yp(r) exp( iEt/h ). —Equation (4) contains the
"dressed potential" Vp(ap, r), which depends on to and I
only through ap. It has obviously real eigenvalues E,
showing that in the high-frequency limit the atom is
stable against multiphoton ionization. ' The frequency
condition under which this should hold was shown to be
co»

~ Ep (ap) ~, where Ep (cp) is the lowest eigenvalue
having the same magnetic quantum number m as the ini-
tial state of the atom in the field. Equation (4) was ob-
tained earlier by Henneberger, and by Gersten and Mit-
tleman using other approaches. "

For the Coulomb case V(r) = e2/r, the dresse—d po-
tential has the form

Vp(ttp, r) = —(2e /tr)(r+r )—
xg [2 12(1 —r+ r ) 1 ] (5)

where r+ =r+ ape (the origin of the coordinates is kept
at the center of V) and K is the complete elliptic integral
of the first kind. '

Vp has r '1 type singularities at the
points characterized by +ape and —ape, and a logarith-
mic singularity along the segment in between; it is axial-
ly symmetric around an axis of direction e passing
through the origin and has even parity. Thus, only the
magnetic quantum number m associated with this axis
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and the parity n (g or u) remain good quantum num-

bers. Because the symmetry is identical to that of
homonuclear diatomic molecules (D p, ), the same type
of classification is adopted for the states. For example,
the ground state, which evolves from the Is state of the
unperturbed atom, becomes a ere state (m =0, even pari-
ty) and will be denoted by (Is) ere.

The eigenvalue problem, Eq. (4), was solved by diago-
nalization of the Hamiltonian matrix in a multicenter
Gaussian basis. The symmetry classes investigated were

os, a„,xs, and n„.'3 The lowest-lying level in each sym-

metry class was obtained to five significant figures accu-
racy.

We report here only on the ground state (ls)as. The
eigenvalues at various ap are given in Table I. Striking
is the drastic decrease in binding energy with increasing
ap. at ap 30 a.u. (a value attained in experiment' ), it
has already dropped by a factor of about 10 with respect
to the unperturbed value. '4 This suggests a strong dis-
tortion of the atom, which we now analyze. To this end
we display the evolution of the (normalized) ground-
state wave function itfp p( xy, z) with increasing ap.
Because of the axial symmetry of the problem, it is
sufficient to give its values in a plane passing through the
symmetry axis z, as done in Fig. 1. When ap increases
from 0 (case of the unperturbed atom), the wave func-
tion p elongates in the z direction, following the elonga-
tion of the line of singularities of the dressed potential
(see Fig. I of Ref. 2). However, as ap approaches 20
a.u. , a saddle sets in, and by ap =30 a.u. two pronounced
maxima appear around the endpoints + ape of the line
of singularities. As we go on to ap =70 and 100 a.u. , the
dichotomy of the wave function is almost complete.
Each of the endpoints is surrounded by a total charge of
approximately e/2. The interval between the two split

TABLE I. Energy of the ground state (Is)crt of atomic hy-

drogen.

ao (a.u. )

0
1

5

10
20
30
50
70

100

E (a.u. )

—0.50000
—0«402 37
—0.201 95
—0.13009
—0.079 871
—0.059 705
—0.041 883
—0.033 335
—0.026 183

parts being about 2ap', at ap=100 a.u. one is dealing
with truly Rydberg-type sizes.

To understand the dichotomy mechanism, we outline
the following argument. ' If at large ap the wave func-
tion p is indeed concentrated around the end points

ape, as suggested by Fig. I, i.e., if p has significant
values only in the regions characterized by (r+/ap) « I
and (r /ap) « I, then the potential Vp(ap, r) can be re-
duced to a simpler form. Indeed, as easily seen from Eq.
(5), for (r /ap) « I, Vp becomes

Vp(ap, r —) = —(2e /n)(2apr )

xg [2 't2(I —r e) 't2]

whereas for (r+/ap) « I it becomes Vp(ap, —r+ ).
Hence, in the vicinity of the end point +ape, Eq. (4)
reduces to one containing Eq. (6) as a potential. By in-

troduction of the scaled variable (=r —/alIt, this equa-
tion takes the form H(()y(g) =Wtp((), where H (g) is
independent of ap and W=a(tij E. Since the square in-
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tegrable function tc(() extends essentially over a finite
region in the space of the g variable, it follows that for
the corresponding region in the r — variable we have
(r —/ap) =((/aIW ) «1. This confirms that indeed (to
lowest order in I/ao) the potential Eq. (6) can support
wave functions concentrated around the end point
+aoe. ' We find further that the (high) ao dependence
of the eigenvalues E„(ao)of Eq. (4) is given by

Z. (ao) =a "'W.[[+0(ao "')] (7)

where W„are eigenvalues of H. For the ground state,
the ao dependence is borne out by the last two eigenval-
ues of Table I.

The eigenfunction p for the ground state, as well as
the corresponding solution of Eq. (I), y(r, t) =p(r)
xexp( —iEt/h), refer to the Kramers frame. In the lab-
oratory frame, the dichotomized wave function of Fig. I

and the corresponding charge density oscillate with

(high) frequency co. The "observable" charge density is
obtained, as usual, by our averaging ~%'(r, t)

~ ~p[r—a(t)]
~

over a period, where lli denotes the wave func-
tion in the laboratory frame. ' The result is shown in

Fig. 2 for two characteristic values of ao. At an=70
a.u. , when dichotomy has set in, the averaged charge
density has a typical trident shape, of extension 4ao in

the z direction, with a central peak roughly twice the
height of the lateral ones. This can be easily explained
by our taking into account the harmonic nature of a(t),
Eq. (2).
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