Theory of the Atomic and Electronic Structure of DX Centers in GaAs and $Al_x Ga_{1-x}$ As Alloys

D. J. Chadi and K. J. Chang

Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304 (Received 24 May 1988)

We propose that DX is a negatively charged defect center resulting from the "reaction" $2d^0 \rightarrow d^+ + DX^-$ where *d* represents a substitutional donor. The results of our pseudopotential calculations for Si- and S-induced *DX* centers in GaAs indicate large dopant-dependent relaxations leading to threefold-coordinated *interstitial* sites for either the donor or one of its nearest neighbors. A simple expression for the alloy composition and pressure dependence of the *DX* binding energy is suggested and used in an analysis of experimental data.

PACS numbers: 61.70.At, 72.20.Jv, 78.50.Ge

The defect which gives rise to a deep donor level in $Al_xGa_{1-x}As$ alloys for $x \ge 0.22$ is commonly known as the DX center.^{1,2} The defect also appears in *n*-type GaAs when pressures in excess of 20 kbar are applied³⁻⁸ or when the dopant concentration increases beyond 10^{19} /cm³ (Ref. 9). The DX center has a repulsive barrier for both electron emission and capture, leading to persistent photoconductivity. In addition, there is typically an order-of-magnitude difference between its $\simeq 0.1$ -eV thermal and $\simeq 1$ -eV optical ionization energies.^{1,2,8} The large Stokes shift led Lang and coworkers^{1,2} to propose that DX is a donor-defect complex which undergoes a large lattice relaxation. There is now strong evidence, however, that DX arises from a substitutional donor by itself.³⁻⁹ This has led to suggestions that DX involves a displaced donor with either large¹⁰⁻¹² or, possibly, small¹³ lattice relaxations.

In this Letter we propose new structural models for Siand S-induced defect centers in GaAs derived from *ab initio* self-consistent pseudopotential calculations. The energetics of DX formation and its electronic structure are also examined and the results for GaAs are extended to the Al_xGa_{1-x}As alloys with a simple model. The main conclusions from our calculations are the following:

(i) The DX center is a highly localized and negatively charged center resulting from the reaction

$$2d^0 \to d^+ + DX^-, \tag{1}$$

where d^0 and d^+ represent neutral and ionized fourfold-coordinated substitutional donors. The donors d^0 need not be spatially close to each other.

(ii) Defect formation involves a large bond-rupturing displacement of either the donor atom itself (for Si_{Ga}) or one of its nearest-neighbor Ga (or Al) atoms (for S_{As}) along a bond axis. In the following discussions, the notation *DX* is exclusively used to refer to the broken-bond configuration in order to distinguish it from the normal substitutional geometry denoted by *d*.

An immediate consequence of (i) is that DX should be electron-paramagnetic-resonance (EPR) inactive. To our knowledge, no EPR signal from DX has ever been reported in the literature. A recent study, with an enhanced sensitivity, by Khachaturyan, Weber, and Kaminska¹⁴ has also failed to reveal any EPR activity and has led them to propose that a "negative U" defect center is responsible for both the lack of EPR and the persistent photoconductivity of DX centers.

In the following, we first examine a simple expression for the variation of the thermal binding energy of DXcenters as a function of composition, pressure, and dopant concentration in $Al_xGa_{1-x}As$ alloys.

The thermal binding energy of a neutral DX center relative to the conduction-band minimum (CBM) is argued to vary with alloying (or with pressure) as

$$\Delta E_0(DX^0) = \Delta E_{\rm CBM} - \Delta E_{\rm CB},\tag{2}$$

where E_{CBM} is the energy of the CBM and E_{CB} is the Brillouin-zone-averaged energy of the lowest conduction band, both measured relative to the valence-band maximum (VBM). The assumption behind Eq. (2) is that DX is a localized defect,⁹ and the variation of its thermal occupancy level relative to the VBM, ΔE_{DX^0} , is nearly equal to ΔE_{CB} . Experimentally, only the variations of the energy bands at the Γ , X, and L points of the Brillouin zone are well known.¹⁵ The Brillouin-zone average for ΔE_{CB} can be determined from these points with the approximation¹⁶

$$\Delta E_{\rm CB} \simeq \Delta [E(\Gamma) + 3E(X) + 4E(L)]/8. \tag{3}$$

The variations of the band edges in $Al_xGa_{1-x}As$ alloys are nearly linear in x, for $x \le 0.6$, and the roomtemperature values are given^{15,17} by (in eV)

$$E(\Gamma) \approx 1.42 + 1.25x,$$

$$E(X) \approx 1.9 + 0.21x,$$
 (4)

$$E(L) \approx 1.71 + 0.64x.$$

Substitution in Eq. (3) yields

. .

$$\Delta E_{\rm CB} \simeq 0.55 \Delta x. \tag{5}$$

Equation (4) indicates that for $x \le 0.46$ the CBM is at

© 1988 The American Physical Society

873

 Γ , and for x > 0.46 it is at the X point. Equations (2)-(5) therefore give

$$\Delta E_0(DX^0) = 0.7\Delta x, \quad x \le 0.46, \tag{6}$$

and

$$\Delta E_0(DX^0) = -0.34\Delta x, \quad x > 0.46, \tag{7}$$

For a negatively charged center arising from Eq. (1), we need the variation of the energy of $DX^- + d^+$ relative to $2d^0$. If we use the same approach as before, this two-electron, two-site energy difference is expected to vary as

$$\Delta E_0(DX^-) = 2\Delta (E_{\text{CBM}} - E_{\text{CB}}) = 2\Delta E_0(DX^0). \quad (8)$$

For a neutral center, the ratio of the densities of d^0 and DX^0 centers is equal to $\exp[-\beta E_0(DX^0)]$, where $\beta = 1/kT$. For the DX^- center, however, it is $\frac{1}{2}E_0(DX^-)$ that enters the Boltzmann factor giving the relation between the densities of d^0 and DX^- centers. The reaction specified by Eq. (1) suggests that

$$(n_{d^0})^2 = (n_{d^+})(n_{DX^-}) \exp[-\beta E_0(DX^-)], \qquad (9)$$

where n_i denotes the density of species *i*. If we use the relation $n_{d+} \approx n_{DX^-}$, Eq. (9) gives

$$n_{d^0} = (n_{DX^-}) \exp[-0.5\beta E_0 (DX^-)]$$

= $(n_{DX^-}) \exp[-\beta E_0 (DX^0)].$ (10)

The temperature dependence of the DX concentration, therefore, cannot be used to determine the charge state of DX. The experimentally derived binding energies,¹⁵ which are based on a βE_0 dependence in the Boltzmann factor, need to be multiplied by 2 for a negatively charged state. To compare the predictions of the simple model to the experimental data of Chand *et al.*,¹⁵ we will use the expressions for $\Delta E_0(DX^0)$ given by Eqs. (6) and (7) while keeping the factor of 2 for the case of a negative charge state in mind.

Equations (6)–(8) show that the binding energy of DXrelative to the CBM increases with Al concentration until the direct-indirect band-gap transition at $x \approx 46\%$ and then decreases. The predicted extremum of $x \simeq 46\%$ for the DX binding energy is in good agreement with the experimentally determined 3,15,18 range of $0.45 \le x \le 0.48$. The 0.7-eV prefactor in Eq. (6) is nearly identical with the 707-meV value obtained by Chand et al.¹⁹ from a best fit to their data. In this connection it is also interesting to look at the variation ΔE_{DX^0} of the DX thermal occupancy level relative to the VBM instead of the CBM. As discussed above in connection with Eq. (2), this variation is equal to ΔE_{CB} which from Eq. (5) is given by $0.55\Delta x$ for x in both the direct- and indirectgap regimes. Since, from Eq. (4) the energy of the lowest conduction band at L varies as $0.64\Delta x$, the DX donor level, relative to the VBM, moves as if it were nearly tracking the L conduction state. The correlation between the motion of the two of $0.55/0.64 \approx 86\%$ is practically identical with the experimentally determined value²⁰ of $0.54/0.64 \approx 84\%$. This result shows that the L-like variation of the DX energy in $Al_xGa_{l-x}As$ alloys can be explained without the assumption that it is an L-derived center. The correlation between E_{DX} and E(L) appears simply because the average energy of the lowest conduction band, E_{CB} , and therefore E_{DX^0} increase with alloy composition at nearly the same rate as the energy at the L point. The accuracy of Eq. (3) used in obtaining this result may be partially assessed by our noting that the lowest-order "special point" averaging gives $E_{CB} \approx E(L)$.¹⁶ This indicates that the L-like variation of the DX binding energy is not limited to AlGaAs alloys alone, but should also hold approximately in other systems. Special care is needed to distinguish a genuinely L-derived effective-mass level from the more spatially compact DX state in these situations.

Making use of the *experimental* result that at $x \approx 0.22$, the thermal binding energy of DX becomes equal to that of shallow donors (≈ 5 meV), the integration of Eqs. (6) and (8) gives (in eV)

$$E_0(DX) = (0.7x - 0.15)(1+q), \quad x \le 0.46, \tag{11}$$

where q assumes the values of 0 or 1 for DX^0 and DX^- , respectively. Equation (11) predicts that DX is unbound (i.e., metastable) by 0.15(1+q) eV in GaAs. From Eqs. (2) and (8), a charge-state independent increase of 0.15 eV in $E_{CBM} - E_{CB}$ would be needed to stabilize DX in GaAs. One method for the realization of this increase is through the application of pressure. In this case the thermal binding energy E_0 is affected because of changes both in E_{CBM} and in the average energy of the conduction-band states E_{CB} . The pressure dependence of $E_0(DX)$ can be easily calculated. The pressure coefficients of the conduction-band states at the Γ , X, and L points for GaAs are well known^{3,21} and, in meV/ kbar, are equal to

$$\delta E(\Gamma) / \delta P = 12,$$

$$\delta E(X) / \delta P \simeq -1.6,$$
 (12)

$$\delta E(L) / \delta P = 5.5.$$

A pressure of 18 kbar increases $E(\Gamma)$ by 216 meV and raises the average energy of the lowest conduction-band state, determined from Eq. (3), by 66 meV, resulting in a net change of 150 meV in $E_{CBM} - E_{CB}$ which should be sufficient to stabilize DX. This result is consistent with experimental results which show the appearance of DX centers in GaAs at pressures of about 20-30 kbar.⁴⁻⁸ In the direct-gap region, the calculated pressure coefficient $\Delta E_0(DX)/\Delta P$ of 8.4 meV/kbar is consistent with experimentally determined values from pressureand temperature-dependent Hall measurements^{3,6} in GaAs and Al_{0.15}Ga_{0.85}As. In the indirect-gap regime, the pressure coefficient $\Delta E_0(DX)/\Delta P$ is calculated to be -5.2 meV/kbar. The change in sign of the pressure coefficient and its overall magnitude are consistent with recent experimental results of Li *et al.*²²

While the dependence of the DX binding energy on alloy composition or pressure does not allow us to infer its charge state, a comparison of the predicted and observed dopant-concentration dependence of the density of DX centers in GaAs provides strong evidence for a negatively charged center. For high dopant densities where the donor electrons form a degenerate electron gas, the formation of DX centers may occur either via the reaction $d^0 + e \rightarrow DX^-$ for a negatively charged center, where e represents a free electron, or via $d^0 \rightarrow DX^0$ if DX were a neutral center. As discussed below the second reaction is energetically very unfavorable. The probability that an electron has sufficient energy to form a DX center is given by $\{1 + \exp\beta(E_{DX} - E_F)\}^{-1}$, where E_F is the Fermi energy. At low temperatures, where $\beta(E_{DX} - E_F) \gg 1$, the stabilization of DX^0 or DX^- , relative to free electrons at $E_{\rm F}$, requires a rise in $E_{\rm F}$ of 0.15 or 0.3 eV, respectively, relative to the CBM in GaAs. The variation of the DX concentration as a function of $E_{\rm F}$, and therefore $E_{DX} - E_F$, has been determined by Theis, Mooney, and Wright.9 From their experiments they conclude that E_{DX} lies ≈ 0.28 eV above the CBM in GaAs. This is within 7% of the value expected from Eq. (11) for a negatively charged center and is significantly larger than the 0.15-eV value for a neutral center. A negatively charged DX center appears to be essential, therefore, in the reconciliation of the DX binding energy determined from the dopant-concentration measurements with those derived from the alloy-composition and pressure experiments. The problem of the pinning of the Fermi level in the conduction band by DX centers at high dopant concentrations is discussed in more detail elsewhere.²³

We have carried out ab initio self-consistent calculations for Si and S substitutional donors in GaAs to examine in more detail the shallow-deep transition of donor levels in $Al_xGa_{1-x}As$ alloys. Optimal atomic coordinates were determined from an iterative energyminimization approach using a three-dimensionally periodic eighteen-atom unit cell. Our calculations show that in GaAs a neutral donor is stable against Jahn-Teller distortions. The local phonon mode of the SiGa substitutional donor is calculated to be at $\simeq 334$ cm⁻ as compared to experimental values²⁴ of 379-384 cm⁻¹. The mode is found to be very anharmonic and the use of lattice distortions smaller than the 0.1 Å used in the calculations should improve the agreement between the theoretical and experimental values. For a negatively charged center, a metastable state with C_{3v} symmetry, which we associate with DX, is found. For a Si donor, the center involves a 1.17-Å motion of the Si atom away from one of its nearest neighbors, along its bond axis, into a threefold-coordinated interstitial position. For a S donor one of the nearest-neighbor Ga (or Al) atoms of the S dopant moves by 1.13 Å into an interstitial site. A donor-lattice bond is broken as a result of these atomic motions. The atomic distortions are nearly identical to those predicted to occur in the stable-to-*metastable* state transition of the *EL*2-related As_{Ga}-antisite defect in GaAs.²⁵

The reaction represented by Eq. (1) is calculated to be energetically unfavorable by 0.22 ± 0.1 eV for both Si and S donors in GaAs. The surprisingly small value of the total-energy differences and the near equivalence of the results for Si and S are in qualitative agreement with the ≈ 0.3 -eV estimate from Eq. (11) and the 0.28-eV value derived from dopant-concentration experiments.⁹ When the charge of the DX^- center is changed to DX^0 or DX^+ , the interstitial atomic configuration is found to be highly unstable with respect to the ordinary fourfoldcoordinated substitutional geometry and there is no barrier for the transformations to this geometry. The DX^0 to d^0 transition is calculated to be exothermic by ≈ 1.3 eV.

Our calculations show that although the Si- and Sinduced DX^- centers in GaAs are metastable, they have optically deep electronic levels associated with them. The optical ionization energies are calculated to be 1.05 eV for GaAs:Si and 0.74 eV for GaAs:S. The optical ionization energies are predicted to increase with pressure or alloying in $Al_xGa_{1-x}As$. In the composition range where the band gap is direct (i.e., $x \le 0.46$), the optical gap is expected to vary as

$$\Delta E_{\rm opt} = \Delta E(\Gamma) - \Delta E_{\rm CB},\tag{13}$$

where the second term on the right-hand side represents the shift of the electronic level associated with DX. Substitution of Eqs. (4) and (5) in Eq. (13) gives ΔE_{opt} =0.70x. The optical and thermal ionization energies are seen to have the same dependence on x and to be largest at $x \simeq 0.46$. The calculated results for GaAs together with Eq. (13) give an E_{opt} of 1.37 eV (1.06 eV) for Si-(S-) induced DX centers at x = 0.46. Since DX^0 is very unstable, the absorption of each photon by a DX^{-} center releases two electrons into the conduction band. For GaAs, our previous results on the pressure dependence of the conduction-band states used in conjunction with Eq. (13) predict, for GaAs:Si, a value of $E_{opt} = 1.34$ eV for P = 33 kbar, which is in good agreement with the experimental value of 1.44 ± 0.04 of Li et al.⁸ At higher pressures E_{opt} is expected to decrease because the CBM changes from Γ to X and the latter has a negative pressure coefficient.

The results of the pseudopotential calculations provide further insight into how the shallow-deep transition depicted by Eq. (1) takes place. The calculations show that when a neutral Si donor atom is displaced away from its nearest neighbor along a bond axis, the total energy increases as expected but the donor level becomes increasingly *deeper* as the displacement becomes larger. When the level has dropped by more than the on-site Coulombic repulsive term U, which is calculated to be $\simeq 0.20-0.22$ eV, the d^0 level can capture a free electron without expelling it immediately back into the CBM. At this point the formation of a d^- center leads to a further motion of the Si atom which transforms it into a DX^{-} center. The energy barrier for electron capture E_{cap} in lightly doped GaAs is calculated to be 0.55 ± 0.05 eV corresponding to the rise in energy for a 0.5-Å displacement of the Si atom. The barrier is expected to decrease linearly with $E_{\rm F}$ as the dopant concentration is increased. The Fermi level $E_{\rm F}$ in highly doped samples appears to get pinned at the point $E_0(DX^{-})$ above the CBM where electrons at E_F can combine with d^0 centers, in the impurity band near the bottom of the conduction band, to form DX centers. If d^+ centers could be transformed to DX^- centers through the capture of two electrons, then $E_{\rm F}$ would be pinned at $\frac{1}{2}E_0(DX^-)$ or 0.15 eV above the CBM instead of the much larger observed value of 0.28 eV.⁹

In conclusion, from an analysis of experimental data on the composition, pressure, and dopant-concentration dependence of the DX binding energy in $Al_xGa_{1-x}As$ alloys and from the results of *ab initio* pseudopotential calculations, we have presented evidence that DX is a negatively charged and highly localized defect center resulting from a large lattice distortion. A more detailed discussion of our results will be presented elsewhere.²³

This work is supported in part by the U.S. Office of Naval Research through Contract No. N00014-82-C-0244.

¹D. V. Lang and R. A. Logan, Phys. Rev. Lett. **39**, 635 (1977).

²D. V. Lang, R. A. Logan, and M. Jaros, Phys. Rev. B 19, 1015 (1979).

 3 N. Lifshitz, A. Jayaraman, and R. A. Logan, Phys. Rev. B 21, 670 (1980).

⁴M. Mizuta, M. Tachikawa, H. Kukimoto, and S. Minomura, Jpn. J. Appl. Phys. **24**, L143 (1985).

⁵M. Tachikawa, T. Fujisawa, H. Kukimoto, A. Shibata, G. Oomi, and S. Minomura, Jpn. J. Appl. Phys. **24**, L893 (1985).

⁶D. K. Maude, J. C. Portal, L. Dmowski, T. Foster, L. Eaves, M. Nathan, M. Heiblum, J. J. Harris, and R. B. Beall, Phys. Rev. Lett. 59, 815 (1987).

⁷M. F. Li, P. Y. Yu, E. R. Weber, and W. Hansen, Appl. Phys. Lett. **51**, 349 (1987).

⁸M. F. Li, P. Y. Yu, E. R. Weber, and W. Hansen, Phys. Rev. B **36**, 4531 (1987).

⁹T. N. Theis, P. M. Mooney, and S. L. Wright, Phys. Rev. Lett. **60**, 361 (1988).

¹⁰T. N. Morgan, Phys. Rev. B **34**, 2664 (1986); P. M. Mooney, G. A. Northrop, T. N. Morgan, and H. G. Grimmeiss, Phys. Rev. B **37**, 8298 (1988).

¹¹K. Kobayashi, Y. Uchida, and H. Nakashima, Jpn. J. Appl. Phys. **24**, L928 (1985).

 ^{12}A . Oshiyama and S. Ohnishi, Phys. Rev. B 33, 4320 (1986).

¹³H. P. Hjalmarson and T. J. Drummond, Phys. Rev. Lett. **60**, 2410 (1988), and Appl. Phys. Lett. **48**, 656 (1986).

¹⁴K. Khachaturyan, E. R. Weber, and M. Kaminska, to be published.

¹⁵N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. C. Chang, and H. Morkoç, Phys. Rev. B **30**, 4481 (1984).

¹⁶D. J. Chadi and M. L. Cohen, Phys. Rev. B 7, 692 (1973). The Γ , X, L averaging scheme is more accurate than use of a single "Baldereschi" point. For a discussion of "special point" averaging schemes, see D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747 (1973).

¹⁷Above x > 0.60 the expression $E(X) = \{1.42+1.25x + 1.15(x-0.45)^2\}$ (eV) of Ref. 15 can be used instead of Eq. (4) for higher accuracy. The x=0 values assumed by the energies in Eq. (4) are not used in the derivations except for determination of the crossover point between direct and indirect band gaps.

¹⁸J. J. Yang, L. A. Mandy, and W. I. Simpson, Appl. Phys. Lett. **40**, 244 (1982).

¹⁹See Eq. (4) of Ref. 15.

²⁰See Eq. (5) of Ref. 15.

 21 K. J. Chang, S. Froyen, and M. L. Cohen, Solid State Commun. **50**, 105 (1984), and references therein.

²²M. F. Li, W. Shan, P. Y. Yu, W. L. Hansen, E. R. Weber, and E. Bauser, in *Defects in Electronic Materials*, edited by M. Stavola, S. J. Pearton, and G. Davies, MRS Symposium Proceedings Vol. 104 (Materials Research Society, Pittsburgh,

PA, 1988), p. 573, and Appl. Phys. Lett. (to be published).

²³D. J. Chadi and K. J. Chang, to be published.

 24 F. Thompson and R. C. Newman, J. Phys. C **5**, 1999 (1972); P. Pajot, R. C. Newman, R. Murray, A. Jalil, J. Chevallier, and R. Azoulay, Phys. Rev. B **37**, 4188 (1988).

²⁵D. J. Chadi and K. J. Chang, Phys. Rev. Lett. **60**, 2187 (1988); J. Dabrowski and M. Scheffler, Phys. Rev. Lett. **60**, 2183 (1988).