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First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics
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A new method to provide interatomic pair potentials from ab initio Hartree-Fock self-consistent-field
calculations is proposed; potentials are calculated for model clusters of silica (SiOz). They are tested in

the molecular-dynamics simulation of crystalline states, in which four known polymorphs of silica are
shown to be dynamically stable.
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Design and prediction of properties of materials is one
of the most challenging problems in computational phys-
ics. Recent developments in many-body calculations for
condensed-matter physics give promise to the reliable
description of electronic states. If one looks into crystal
structures, first of all, one has to establish a well-defined,
first-principles method to provide interatomic interac-
tions by which one can reproduce and even predict the
stability of crystal structures for given materials. Al-
though there is a rather long history for trials to deter-
mine interatomic potentials, ' 7 they have been primarily
empirical: A potential with adjustable parameters is de-
rived from experimental results for structures, elasticity,
etc. In this context an opposite procedure would be
desirable. Here we propose that we can provide intera-
tomic potentials extracted from ab initio cluster calcula-
tions, which are fed into bulk calculations to predict,
rather than be adjusted to, crystal structures. In the
cluster calculation we employ the Hartree-Fock self-
consistent-field method, which is one of the established
many-body methods and is known to give very precise
structures of molecules. More important, study of un-
known polymorphs or materials becomes feasible only
with nonempirical approaches.

Since the interatomic potentials depend, in principle,
on the full atomic configuration, they are decomposed
into two-atom potentials, three-atom potentials, etc. It
is, then, an interesting question to ask to what extent
physical properties can be described by "optimized"
two-atom (pairwise) potentials. Here we envisage that
the optimized potentials are those which are best fitted to
ab initio cluster calculations including many-body
effects. The ability of these potentials to reproduce the
stability of polymorphs of crystals may then be tested by
molecular-dynamics (MD) simulation.

In this view we report in this Letter a nonempirical ap-
proach to determine the interatomic potential for silica
(Si02). Despite its simple chemical unit, silica is known

to assume various crystal structures (polymorphs) whose
densities vary in as wide a range as 2.3 (a-cristobalite)
to 4.3 g/cm (stishovite). As evident from this variation,
silica is not a close-packed system, so that a sensitive test
of the interatomic potential may be made. We also note
that empirical total-energy calculations, which are often
employed in the discussion of the stability of crystal
structures, optimize the system by varying some parame-
ter that preserves the symmetry of the crystal. This pro-
cedure, however, can be quite inadequate, since in some
cases the crystal disintegrates upon removing symmetry
restrictions. Thus we study dynamical stability by the
MD simulation as a more reliable test. For silica, there
is a pioneering work by Woodcock et al. with an empiri-
cal pair potential. We have also tested the potential em-

ployed by them, and the MD result shows that the initial
a-quartz and a-cristobalite structures transform, respec-
tively, into higher-symmetry states, that the bulk
modulus of quartz is significantly larger than the experi-
mental result, and that the Si-0 distance is not repro-
duced unless a constant-volume (a nonthermal equilibri-
um) condition is used. Thus, although there have been a
number of empirical and nonempirical approaches for sil-

ica, s'9 it is shown here for the first time that we can
reproduce with common pair potentials virtually all the
known' polymorphs of silica (a-quartz, a-crystobalite,
coesite, and stishovite) and their elastic properties.

We start from the total-energy calculation of the
tetrahedral Si04 cluster, which occurs in crystalline
silica as well as in its melt. We regard the cluster as em-
bedded in a crystal, so that we add four point charges,
e+, as shown in the inset of Fig. 1, which guarantee the
charge neutrality and also mimic the Madelung potential
arising from the rest of the crystal. The distance be-
tween an oxygen atom and the point charge is set equal
to the usual Si-0 distance in silicates (1.65 A). The
Gaussian basis functions employed are (12s8p)/[Ss3pl
(Ref. 11) with two d orbitals (with the exponent,
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a =0.118, 0.424) ' for silicon and (9s5p)/[3s2p] with p
functions (with a =0.059) ' for negative-ion states of
oxygen. We assume no electron orbitals around the
point charges.

The potential energy surface is then obtained by our
changing the Si-0 distances or 0-Si-0 angles with three

t

difl'erent modes. One potential energy surface is depict-

U/(r) =U;/c'""~ b(r)+f o(b;+b J)exp[( a+a J r)/(—b;+bi

ed in Fig. 1, in which we stretch all the Si-0 bonds keep-
ing the Td symmetry of the cluster. We have also ob-
tained the results for the C3„,mode, in which only one
Si-0 distance is changed, and the D2d mode, in which
0-Si-0 angles are varied with constant Si-0 distance.

It has turned out that these three potential energy sur-

faces can be fitted well by a sum of pairwise interatomic
potentials. We have employed the function form,

)] —c;cj/r', (1)

which consists of Coulomb interaction with some corrections discussed below, Born-Mayer-type repulsion, and disper-
sive interaction. Here r is the distance between atoms and a; (b;) is the effective radius (softness parameter) of the ith
atom with the standard force fo 1 kcal A mol . We also include Coulomb interactions with the point charges.

A caution must be made in the evaluation of the Coulomb interaction in the cluster, because the effective charge in
the bulk, Q;, is different from that in a Si04 cluster, Q;: In terms of the fractional charge, An, transferred from a Si
atom to an 0 atom per Si—0 bond, we have Qp= —2/)ne and Qs;=4/)ne, while we have Qo= —(I+An)e and

Qs; =4/)ne We. express the Coulomb interaction in the cluster as a sum of long-range and short-range parts as

Uij~'"" '=Q;Q, [1 —g~)(r)]/r+Q;Q)gii(r)/r,

gso(r) =(I+fr)exp( 2/r), —goo(r) =[1+11((r)/8+3((r) /4+((r) /6]exp( —2(r).
(2)
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The correction, g&(r), in the long-range part (the first
term) involving Q reflects the distribution of the excess
charge of oxygen, for which we assume a hydrogenlike
orbital with a radius I/( here. The radius is of the order
of the ionic radius of 0, so that we employ I/(=1.4 A
following Pauling. ' Since the remaining short-range
part is expected to be insensitive to the environment, we
use the bulk Q; there. Once the parameters a;, b;, and c;
are optimized from the cluster calculation, we switch Q
back into Q (i.e., UPi"" =Q;Qi/r) in the bulk simula-
tion. Thus the final pair potentials have the same func-
tional form as suggested by Gilbert and Ida. '

From the cluster calculation, the charge obtained by
the Mulliken analysis, which is Qp- —1.7e (i.e.,

I
hn 0 7)-for. the equilibrium bond length, is shown to be
a function of the Si-0 distance (Fig. 1). The feature
that the atomic charge varies with the bond length clear-

ly indicates a many-body character of interatomic forces
in the covalent system. The physical mechanism will be
discussed in more detail elsewhere. To concentrate on

the pair-potential approach, however, we have used con-
stant Q; (Q;). Since small-cluster results are insufficient

to determine the long-range Coulomb interaction, and

because the absolute value of the Mulliken charge itself
depends on the choice of basis function, we have not in-

cluded An in the fitting procedure. Instead we tried
several fixed values of An around the Mulliken charge.
Among the trial values studied here, the fitted parame-
ters with An 0.6 reproduce the best crystal parameters.
Since the fitting procedure for a;, b;, and c; is nonlinear,
more than one set of parameters are obtained. We have

chosen the one (Table I) which optimizes the structure
and compressibility of a-quartz' in a static simulation

by the program wMtN. '

Now we turn to the MD study. We have performed
the dynamical stability test for four polymorphs of silica
mentioned above. !t has been experimentally shown that
these polymorphs, which correspond to different pres-
sure-temperature regimes, can also exist at normal pres-
sure and temperature as metastable states. In the

present simulation, the number of atoms in the system is
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TABLE I. Potential parameters determined in this study.

FIG. 1. Total energy and the Mulliken charge on an oxygen
atom for Td deformation of a Si04 -4e+ cluster shown in the
inset. The solid circles are the cluster calculation, full curve is

the fitted potential, and the broken curve is a guide to the eye.
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TABLE II. Structural parameters obtained here as compared with experimental results for various polymorphs of silica.

a-quartz
Obs. ' This work

a-cristobalite
Obs. This work

Coesite
Obs. ' This work

Stishovite
Obs. This work

a (A)
b (A)
e (A)
a,P, y
Si-O(1) (A)
Si-O(2) (A)
Si-0-Si
Density (g/cm ')
Bulk modulus (Mbar)
Energy (kcal/mol)

4.916
4.916
5.405
y =120
1.605
1.614
143.7'

2.646
0.38 (3)

5.02
5.02
5.54
120
1.63
1.64
147'
2.48
0.337

—1235.1

4.978
4.978
6.948

1.601
1.608

146.8'
2.318

4.99
4.99
6.66

1.56
1.69
142'
2.41
0.172

—1231.2

7.1356
12.3692
7.1736

P =120.34'

2.921
0.96(3)

7.23
12.74
7.43

120.8'

2.72
1.08

—1236.9

4.180
4.180
2.666

1.809
1.757

4.283
3.35

4.27
4.27
2.75

1.84
1.81

3.98
3.1 1

—1234.1

'Reference 16.
"Reference 19.

'Reference 20.
Reference 21.

324 (containing 36 unit cells), 216(18), 192(4), and
270(45) for a-quartz, a-cristobalite, coesite, and stisho-
vite, respectively. We impose periodic boundary condi-
tions in all directions. The Ewald sum method is used
for evaluating the long-ranged Coulomb interaction.
Starting from the ideal crystal configuration and random
velocities, we let each atom move in Newtonian dynam-
ics until equilibrium is achieved. 7' The pressure and
temperature are kept equal to the normal value by scal-
ing the size of the cell and the kinetic energy. The MD
result with the pair potential obtained above shows that
the four polymorphs are dynamically stable despite large
differences in their topology and density. The structural
parameters are summarized in Table II together with the
atomic configuration in Fig. 2. The molar energy of the
polymorphs are also listed in Table II. The energy
difference between a-quartz and stishovite is smaller
than the experimental result by about 10 kcal/mol. 22

(b)

FIG. 2. Atomic configurations (averaged over time steps)
obtained in the MD study for (a) a-quartz, (b) a-cristobalite,
(c) coesite, and (d) stishovite. Note the elementary (a) eight-
membered ring, (b) six-membered ring, (c) four-membered

ring, and (d) Si06 coordination.

Since we have concentrated on considering force con-
stants (curvature of the deformation potential) but not
the binding energy itself, the potential does not neces-

sarily give the correct absolute value for the total energy.
Thus the present method, which is quite adequate for the
study of structural stability, may be coupled to total-

energy methods like band calculations to give a more ac-
curate description of polymorphs including the thermo-
dynamics of phase transitions.

We have also performed MD calculations under high
pressure (up to 25 GPa for stishovite). We estimate the
bulk modulus by fitting the pressure-volume result to a
Birch-Murnaghan equation of state as is done in experi-

mental analysis. '6' o ' The obtained bulk moduli (Table
II) are in good agreement with the experimental result
even for stishovite, in which six oxygens surround each
silicon, as well as for other polymorphs. Thermal expan-
sion and phase transitions at higher temperatures will be
discussed elsewhere.

Although both covalent and ionic characters should be
present in silica, one would consider that tetrahedral
units indicate dominant covalent bonding. The present
result shows that (dynamical) stability of silica can nev-
ertheless be reproduced by the pairwise potentials which
are extracted from small clusters. Broadly speaking, the
fact that different polymorphs are reproduced may be at-
tributed to the strong bonds between silicon and the
nearest oxygens. Still, it is rather remarkable that
several polymorphs are reproduced with the same pair
potentials, since the differences in the tilt angles between
Si04 (or Si06) units are important in these polymorphs,
which is precisely why an accurate determination of po-
tentials is required. Effects of three-body interactions,
which should be present in such properties as phonon
dispersion or latent heat, is a future problem.
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