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We introduce a new theoretical approach that clarifies the origin of fractal structures in irreversible
growth models based on the Laplace equation and that provides a systematic method for the calculation
of the fractal dimension. A specific application to the dielectric breakdown model (including therefore
diffusion-limited aggregation) in two dimensions is presented. For fractal growth this new method ap-
pears to be more appropriate than the renormalization-group method.
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The prototype fractal ' growth models are
diffusion-limited aggregation (DLA) and the more gen-
eral dielectric breakdown model. These models have
been extensively studied in view of their intrinsic theoret-
ical interest and because they are believed to capture the
essential features of pattern formation in seemingly
different physical phenomena. '

Most of the activity in this field has been based on
cotnputer simulations. s From the theoretical side
there have been some interesting developments from the
phenomenological point of view, while the present appli-
cations of real-space renormalization-group methods to
these problems are still unclear 'o and field-theory
methods could provide definitive results only for the sur-
face exponents of the two-dimensional Eden model. "

In this Letter we present a new theoretical approach to
fractal growth that clarifies the origin of fractal struc-
tures in these models and provides a systematic approach
to the calculation of the fractal dimension. A more com-
plete description including a comparative discussion of
this new method with respect to the renormalization-
group method will be presented in a longer paper. '2

Let us consider a frozen pattern (not modified by fur-
ther growth) of dimension D grown with DLA or the
dielectric breakdown model between two parallel lines
as shown in Fig. 1. This geometry has the advantage of
defining a growth direction and eliminates most of the
lattice anisotropy complications. We now consider a
process of box covering' for the (D —1)-dimensional set
of points where the pattern is intersected by a line as
shown in Fig. I.

The elementary process by which a black box is subdi-
vided into two leads to two possible configurations indi-

cated as type 1 and type 2 (see bottom of Fig. 1). The
corresponding probabilities in this process of fine grain-
ing are indicated by Ct and C2, respectively. Normali-
zation requires that C1+C2 =1. The average number of
black subboxes that appear at the next level of fine

graining from one black box is

(n) =g;n;C; =Ct+2C2.

It is easy to show that the fractal dimension of the whole
structure is related to the values of Ct and Cq by

D = I +In(n)lln2. (2)
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FIG. 1. Schematic picture of the process of box covering for
the set of points given by the intersection of the fractal struc-
ture with a line. Dashed segments denote the first division of a
cell. Bottom: elementary process of fine graining for a box
(black) that contains some elements of the set.

Given a certain level of fine graining, the distribution
(Ct, C2) corresponds therefore to the relative density of
newly formed pairs (characterized by a dashed line) of
types 1 and 2, respectively. However, this description is
not complete because also large empty (white) segments
appear. They correspond to the distribution of empty
segments between two adjacent branches as indicated,
for example, by X; and XJ in Fig. 1. The probability of
occurrence P(l) of a certain value of X, can also be re-
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lated to (C1,C2). If we define b as the lowest scale and
X„&b" (n =1,2, . . . ; A,11-0), it can be shown by a non-
trivial combinatorial analysis that '

p(~, -o) =c2/(I+ —,
' C ) (n=0),

p(~. -b") =— (-, + —, C, ) "-3 C1C2, , („,)
2 (3 —C2)

(n =1,2, 3, . . .).

(3)

Note that the k distribution requires an analysis of all
the steps of the fine-graining procedure.

In summary, all the properties of the system can be re-
lated to the distribution (C1,C2). Because of the scale
invariance of the Laplace equation, the same distribution
(C1,C2) is recovered if we consider the growth process at
diA'erent scales. This, of course, provided that the sys-
tem has reached an asymptotic distribution (C1,C2) in-

dependent of the initial conditions. The key point is,
therefore, to find a systematic method to compute this
distribution.

We now consider the conditional probability that,
within a frozen region, a pair configuration (cell) of type
1 (or type 2) is followed, in the growth direction, by a
cell of type 1 or 2, respectively. This gives rise to a
fixed scale tran-sformation because the two cells con-
sidered are at the same scale. Note that the cells are
defined as the basic ingredients of the fine- (or coarse-)
graining procedure. In this respect we do not have to
consider separately diagrams leading to two blank sites
in the growth procedure. The processes involving such
configurations in any combination with cells of type 1 or
2 are already included at a further level of fine graining
in the processes that we consider in a similar way as
shown in Fig. 1.

In order to compute this conditional probability, we
consider growth conditional to the existence of a frozen
cell of preassigned type. Therefore, growth is not con-
sidered within this initial cell. The growth process is
then analyzed until the next cell in the growth direction
becomes also statistically frozen. Figure 2 illustrates an
example of this procedure. The initial frozen cell is of
type 1 and it is denoted by a continuous line around it.
The outer boundary condition can be located very close
to the considered structure because we are only interest-
ed in relative probabilities within this structure. For the
same reason we do not consider growth outside the
column on top of the initial frozen cell. A nontrivial
problem is the choice of lateral boundary conditions.
For the moment, we adopt periodic boundary conditions
with the period defined by the two dashed lines (Fig. 2).
Later on, we are going to improve on this point. The
relevant growth processes are indicated by the small ar-
rows in Fig. 2. The first site to be occupied is necessarily
the one above the occupied site of the initial cell; there-
fore, this is already included in the starting configuration
[Fig. 2(a)]. Note that the growth direction in Fig. 2

should be interpreted as the local growth direction of the
real structure. The analysis of further growth requires
the knowledge of the potential field corresponding to this
structure. ' This defines the probabilities p2 1 and
p11=1 —p21 for first-order processes. In a similar way,
from the potential field corresponding to Fig. 2(b), one
defines p3 2 for second-order processes.

The probability that site 2 of Fig. 2(a) will be occu-
pied after inftnite groivth gives the matrix M12 corre-
sponding to the conditional probability of having a
frozen cell of type 1 followed by a frozen cell of type 2.
This can be written as

(a)
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FIG. 2. Starting from a frozen cell of type 1 (encircled), we

analyze the probability that asymptotically (after infinite
growth) this is followed, in the growth direction, by a frozen
box of type l or 2. Periodic boundary conditions are used with
the period defined by the dashed lines.

~1,2(rt) =p2, 1(rt)+ [I p2, 1(rt)]p3,2(ri)+ ' ' ', (5)

(where rt has the usual meanings) and, in principle, the
series should be continued until the probability of occu-
pation of site 2 in Fig. 2(a) is virtually negligible (freez-
ing condition). It is important to note, however, that
higher-order terms in this series correspond to con-
figurations in which this site is strongly screened by
growth that has occurred at other sites [see Fig. 2(b) in
which the site 3 is the original site 2 of Fig. 2(a)]. This
is because the penetration length for the potential given
by the Laplace equation is of the size of the structure
that one considers. ' Such a fact is crucial because it al-
lows rapid convergence of the series given by Eq. (5) to a
number diferent from 1 (except for the case rt 0).
This is the key point for the formation offractal struc
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C, (~)'"+"' 'M (~) M (~)' 'C(&)'"'

,C, (&) '"+" Mi, 2(~) M2, 2(~) C (&) '"1

(6)

where k denotes the order of the iteration. The fixed

point for the (C1,Cz) distribution is given by

M, ,(~)
M2, , (~)

(7)

The knowledge of (Ci, Cz ), together with Eqs. (1) and

(2), allows one to compute the fractal dimension D. For
the case r/=1 (DLA), we obtain D=1.4747 for the
first-order processes, and D=1.5418 if we include also
second-order. Inclusion of even higher orders shows con-
vergency to about D =1.55. '

Such a value is rather low compared with the com-
puter-simulations result D-1.70. This, however, was

to be expected because the periodic boundary conditions
(Fig. 2) imply that the structure is immediately followed

by another branch and this produces a strong screening
for the internal points. Now the X distribution of Eqs.
(3) and (4) provides the correct distribution of lengths
between consecutive branches while the calculation that
we have discussed corresponds only to the case ko-0.
This calls for a generalization of the theory in order to
take into account the fluctuations of boundary conditions
corresponding to the A. distribution. The matrix eleinents
of the fixed-scale transformation are given in this case by
the weighted averages for the different boundary condi-
tions

tures. In fact, if Eq. (5) converges to a number smaller
than 1, this implies that Mi i(r/) =1 —Mi 2(r/) will be
different from zero asymptotically. Therefore, there is a
finite probability that growth will leave empty sites
(holes) even asymptotically. In view of the scale invari-

ance of the Laplace equation, this conclusion holds at
any scale and therefore holes of all scales can be generat-
ed.

By considering the diagram that starts with a cell of
type 2 (not shown), we can compute in a similar way

the other two matrix elements Mq, 1(r/) and M2, 2(r/)
=1 —Mq i (r/). These matrix elements completely define
the fixed-scale transformation that leads to an iterative
equation of transfer matrix type for (C1,C2):

fixed-point condition,

g„-pP(k„;C/* (r/) )M/, 2(r/;X )
Ci r/= 1+

p P(k„;C)' (r/) )M2 ) (r/;A. „)

TABLE I. Values of the fractal dimension as a function of
the parameter g for the dielectric breakdown model in two di-
mensions computed with the various schemes of the theory dis-
cussed in this paper and compared with the results of computer
simulations (Ref. 14). The case r/ 1 corresponds to DLA
while g =0 gives one type of Eden model.

Present
theor

0.5

is a nonlinear equation of infinite order. From Eq. (4)
we can see, however, that the efl'ect of higher-order
terms decays exponentially. As a simple approximation
we may then assume that, as soon as X„ is larger than or
equal to b, the boundary condition is essentially open
(k ), while for Xo-0 it is closed as in the case treated
before. This allows one to consider only two possibilities:
closed configurations with probability Po=P(ko) =C2/
(1+C1/2) and open configurations, corresponding to k
with probability P =1 —P(kp). The fixed-point equa-
tion [Eq. (9)j is then drastically simplified and its solu-
tion can be given in analytical form. '2

The matrix elements corresponding to Po are those
computed previously, while for the open boundary condi-
tion a new diagram analysis is needed. The details of
this will be discussed elsewhere. ' Here we only report
the results of the ko-X method for r/ =1: D =1.6080 for
second order and D =1.6406 for third order. As expect-
ed, the self-consistent treatment of boundary-condition
fluctuations has substantially improved our results.

Table I shows a summary of the values of D(r/) com-
puted with the various methods discussed. The agree-
ment with the computer simulations is very good for
large values of r/ and less accurate for r/~ 0. The origin
of this effect becomes clear if we reconsider the freezing
condition for the truncation of the series in Eq. (5). In
the limit r/ 0 it is not enough to consider only a few
terms in this series because the screening effect is essen-
tially suppressed. In fact, by consideration of, for exam-

ple, diagrams of the type of Figs. 2(a) and 2(b) (but, for
simplicity, with open boundary conditions) it is easy to

M, , (~) = g P(~„)M;,(qP. ),
n 0

(8)

where M~ J(r/;k„) corresponds to diagrams in which the

next branch is at distance k„=b";Ao-0. In view of Eqs.
(3) and (4) for P(A,„), the final matrix elements are now

functions of all powers of (Ci, C2) and the corresponding

Xo,
. first order

A.o,
. second order

A.o-k; second order
XO-A, ; third order
Any X; ~ order

1.7885
1.8990
1.8896
1.9039
2

Computer simulations 2

1.6465
1.7515
1.7549
1.7830

1.92

1.4747
1.5418
1.6080
1.6406

1.70

1.1885
1.1997
1.3956
1.4190

1.43
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show that for q =0 the probability that site 2 of Fig.
2(a) will never be occupied up to the Nth order process
1S

jv

~, , (~=o) = + n

n 1 n+1
123 N —2N —1 1

~ ~ ~ (lo)234 N —
1 N N

Therefore this point will be occupied with probability l,
leading to D =2, but only if processes of all orders are
considered.

In summary, our new approach exploits the scale in-

variance of the Laplace equation that implies that the
structure is self-similar under both growth and scale
transformations. This allows one to introduce a fixed-
scale transformation under growth (instead of coarse
graining as in renormalization-group theory) that defines
a functional equation for the fixed point of the distribu-
tion of basic diagrams used in the coarse-graining pro-
cess. In addition, the analysis of the freezing condition
for a given cell requires the study of an infinite number
of processes that occur outside this cell. This is not in

the spirit of the usual applications of renormalization-
group theory'o and it can be done much better with the
fixed-scale transformation.

L. Pietronero is grateful to G. Parisi, L. Peliti, A. P.
Siebesma, A. Vulpiani, and Y. C. Zhang for interesting
discussions.
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