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Observable Fast Kinetic Eigenmode in Binary Noble-Gas Mixtures?
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It is suggested that a fast kinetic mode should be observable in a whole class of disparate-mass Auid

mixtures, such as gaseous He-Xe, by neutron scattering experiments, at not too high densities and Xe
concentrations.

PACS numbers: 61.25.Bi, 05.20.—y, 51.10.+y

Many years ago Grad' pointed out that in dilute
disparate-mass mixtures, i.e., binary mixtures of dilute

gases, where the two components have very different
masses, the slow exchange of kinetic energy between the
two components should lead to two temperatures: one
associated with the light component and one associated
with the heavy component. This idea was further
developed by others, especially, by Johnson and co-
workers and Kamgar-Parsi and Cohen, who studied
the behavior of forced sound modes as a function of the
frequency cp of an external disturbance in dilute binary
mixtures of He and Xe. For He concentrations x t)0.45 and frequencies cp) 10 Hz, a sharp increase in

the sound velocity was found.
Recently Bosse et al. have found a very fast propa-

gating soundlike mode —which they called fast sound—at a wave number higher than a critical wave number

k, =2 nm ', in a computer simulation of a model of a
liquid Lip sPbp 2 alloy. This eigenmode was deduced
from the presence of a pronounced Brillouin-type peak in

the partial dynamic structure factor S&t(k, cp), associat-
ed with the light (Li) component, at a position that cor-
responded to a velocity 3 times that of the velocity of
sound. No such peak was found in S22(k, cp), associated
with the heavy component (Pb). To what extent this
fast-sound peak would be present in the total S(k, cp) of
actual Li-Pb alloys was left open.

In this Letter, we want to point out that a fast propa-
gating kinetic mode should be observable in the neutron
spectrum of a whole class of fluid disparate-mass mix-
tures. We take He-Xe mixtures at suSciently high He

concentrations (around xi =0.75) and not too high den-
sities (reduced densities below 0.5) as a typical example.
The predictions are based on a hard-sphere fluid model
of the He-Xe mixtures, which has been used before for
the neutron scattering of simple noble-gas fluids. 5 An
advantage of our using a hard-sphere model is that a ki-
netic theory is available for all densities, so that a more
detailed discussion of the dynamical processes in the
fluid can be made. The work on forced modes in dis-
parate-mass mixtures indicates that the occurrence of a
fast kinetic mode need not be restricted to such large
mass ratios as in He-Xe mixtures. '

The quantities of interest are the partial dynamic
structure factors, the Fourier transforms of the density-
density correlation functions:

(+ OO

SJ(k,co) dt e'"'(bn; (k, 0)bnj(k, t)&.

Here i,j =1,2 and Bn;(k, t) is the fluctuation of the num-
ber density of the ith component, which is, for k&0
(k= ski), given by

bn(k t), g e
yN; p-1

where r~(t) is the position of particle p of species i at
time t and N; is the number of particles of species i For.
classical fluids, all S;, are real and Si2 =S2t.

The dynamics of a hard-sphere fluid is governed by a
pseudo Liouville operator, which in kinetic theory is ap-
proximated by a single-particle operator LE(k) that per-
mits us to write the S;J(k, co) in the form

S;,(k, )t=o„dt e'"'((y;(v tv ,2k)e' '"'Vr, (vt, v2, k)&t&2.,

each one of the two functions yr;(vt, v2, k) (for i =1,2) is a two-component function depending parametrically on k. A
general two-component function p(vt, v2) is defined as follows:

'yt(v, )
'

4'(vl ~V2) ( )

where pi(vt) and p2(v2) are its components. The scalar product (& &t&2 between two functions p(vi, v2) and p'(vt, vz)
is defined by

((p(vt, v2), p'(vt, v2)&t&2=& d vt pp(vi) d v2&p(v2)[pt(vt)pt(vi)+&2(v2)&2(v2)l,
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where po(v;) is the Maxwell velocity distribution for component i. We should note that actually the two particular
functions t)c;(vl, vz, k) in S;J(k,co) are independent of vl and vz, but for the sake of mathematical generality, we main-

tain the notation ter(vi, vz ,k.); their components are such that

((p;(v&, vz', k), pj(vl, vz', k))1)z Scj (k),

where S;J(k) are the partial static structure factors. For details we refer to a later publication. The differential cross
section for neutron scattering is proportional to a weighted average of the S;z(k, co):

d'cr/dcodn-x)bl Sii(k, co)+xzb)Szz(k, co)+2(xixz) ' bibzS|2(k, co), (1)

where b; is the effective scattering length of a nucleus of
the ith component.

The computation of the Si/(k, co) for the k values of
interest here is performed by matrix inversion or by a
spectral decomposition of the time-evolution operator
LE(k) in terms of discrete eigenmodes. The latter leads
to an expression for S;J(k,co) as a sum of Lorentzians

The propagating modes, in particular the fast propa-
gating mode, manifest themselves directly in the correla-
tion functions S;J(k,co). In Fig. 2, the partial correlation
functions Sll(k, co) and Szz(k, co) are given in different

0.6
M;" (k)

S;J(k, co) =—Re+ . , ),n n tco zn'l
(2) 0.5-

(a)

where the sum runs over the eigenvalues z„(k) and the
amplitudes M;J(")(k) can be expressed in terms of the
eigenfunctions of LE(k). In our calculations we deter-
mined eight eigenmodes of the mixture on the basis of
the Bernstein-Greene-Kruskal method. 59 The details
will be given elsewhere.

The reduced eigenvalues, corresponding to the first
two propagating eigenmodes —the ordinary sound mode
and its extension, and a kinetic mode —are given in Fig.
1. These modes are plotted as functions of a reduced
wave number for a He concentration xi =0.8 and a re-
duced density n* =nlcrl+nzcr) =0.4, where the equiv-
alent hard-sphere diameter of the He and Xe are taken
to be ai =2.163 A and az=4. 801 A, respectively. To
each propagating mode in Fig. 1 correspond two eigen-
values, which have the same negative real part, that en-
sures the damping out of the corresponding fluctuations,
and imaginary parts with opposite signs, that represent
propagation in opposite directions. In the following, the
imaginary part of a mode is understood to be the abso-
lute value of the imaginary part of its eigenvalues. For k
sufficiently close to zero, there is only one propa-
gating mode, corresponding to ordinary sound. Howev-

er, for kalz & k, alz=0.01 [crlz =(crl+crz)/2), a second
propagating mode appears, the imaginary part of which
has a sudden steep increase in slope at kcriz =0.6, where
a third propagating mode (not shown in Fig. 1) appears.
For kcrlz & 0.6 the propagation velocity [co/k or dco(k)/
dk, where co=lmz] of the second propagating mode is
about 3 times that of the velocity of the extension of the
sound mode in this k regime. This new propagating
mode is a kinetic mode, because the real part of its ei-
genvalue does not vanish for k 0, contrary to the ei-
genvalues of the sound modes. From the corresponding
coefficients M;J" (k) one can deduce that the fast mode
only occurs in component 1.
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FIG. 1. Reduced eigenvalues of the first two propagating
modes: (a) absolute value of imaginary part; (b) real part. cF
(Ref. 5) is the Enskog mean free time; cri2=(ai+o2)/2; s,
sound mode; k, kinetic mode. The dotted lines in (a) are the
modes obtained by a 4x 4 moment method (see text).
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approximations for a typical value ka|2=1.5. Eight
Lorentzians, i.e., eight eigenmodes or n =8 in Eq. (2),
give a result identical to that obtained by matrix inver-
sion. Approximation with six Lorentzians, leaving out
the fast kinetic mode, clearly shows that the fast mode
contributes only to Sl 1. The right-hand side of Eq. (1) is
plotted in Fig. 3, where the large contribution of the fast
kinetic mode to S(k, ru) is clearly visible.

We note that (at temperature T=293 K) the group
velocity of the fast propagating mode is about 1.20x10'
cm/s, very close to the sound velocity of 1.261x 105 crn/s
in a single-component fluid (at the same temperature)
obtained by removal of all the Xe atoms from the mix-
ture (ratio 0.95), but quite different from all the sound
velocity of 0.77 && 105 cm/s in the mixture (ratio 0.61).

Concluding, we make the following remarks:
(1) The partial dynamic structure factors Sz(k, ru)

can be determined experimentally by variation of the iso-
topic composition of the mixture. The detection of a
shoulder in Sl 1(k, ro) and S(k, ro) but not in S22(k, ro) at
a frequency much higher than ck (c is the velocity of
sound) would be an indication for a fast propagating
mode.

(2) The above analysis for a hard-sphere model of the
disparate-mass mixture shows that a kinetic fast mode is

present over a wide range of densities (0.1 & n* & 0.5)
and concentrations (0.6 ~ x t (0.85). One would expect
these results also to obtain for actual He-Xe as well as
for other disparate-mass mixtures (H2-Xe, He-Ar) under
comparable conditions, since a comparison of (pure)
liquid argon with a corresponding hard-sphere fluid indi-
cates that propagation is much more pronounced in

liquid Ar than in the corresponding hard-sphere fluid,
while damping is similar for the two fluids.

(3) The fast-sound mode discussed here differs from
the fast-sound mode discussed by Johnson and co-
workers in two respects: Here it concerns an eigenmode
rather than a forced mode, and the k, cu regimes differ by
4 orders of magnitude.

(4) The connection with the model alloy Lip sPbp 2 dis-
cussed by Bosse et a/. is that in that case the damping of
the relevant eigenmodes appears to be much less than in

our fluid mixtures. Consequently, the side peak in

Sll(k, ru) is much more pronounced for the model alloy
and an analysis considering only the propagating parts of
the eigenmodes, or equivalently the S;,(k), is possible. 4

In fact, it can easily be shown that their calculation is
equivalent to our using the moment method'2 in the En-
skog kinetic theory, and one approximates the operator
LF. by a 4x4 matrix that describes only the coupled fluc-
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FIG. 2. Reduced partial dynamic structure factors as func-
tions of the reduced frequency. (a) He (S|1): solid line, ma-
trix inversion; dotted line, six Lorentzians without fast kinetic
mode. (b) Xe (S22): matrix inversion and six Lorentzians give
the same curve.
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FIG. 3. DiAerential scattering cross section as a function of
reduced frequency. Symbols as in Fig. 2(a).
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tuations of the density and the longitudinal (component
parallel to k) velocity of each component, but neglects
the damping given by the collision terms in LE.

The modes obtained this way are given in Fig. i(a),
where one sees that the fastest of the two modes is very
close to our fast kinetic mode for kcr~q & i. That one can
obtain to a good approximation the propagating part of
the fast mode, in the relevant k regime, in spite of the
neglect of the collision term in the kinetic operator sug-
gests again that a fast propagating mode could well be
present in a large class of disparate-mass fluid mixtures.

This work was performed in part under Grant No.
DE-AC02-ER10807 of the U.S. Department of Energy.
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