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The correlation functions of the transmission coefficients for scalar wave propagation through disor-
dered media are calculated by use of both diagrammatic techniques and numerical simulations. The cal-
culation is valid in the diff'usive regime: multiple elastic scattering with negligible absorption or inelastic
scattering and a scattering length much longer than the wavelength. In addition to the familiar large lo-

cal intensity fluctuations we find a novel memory eA'ect and long-range correlations in the transmission
coefficients which decay to a positive background value. Implications for light-scattering experiments
are discussed.
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Coherent waves propagating through a disordered
medium' will emerge from that medium with a phase
that varies in an effectively random manner along the
wave front. If one assumes that the outgoing wave am-
plitude at a given point (or in a given mode) is a sum of
a large number of uncorrelated amplitudes and that the
total amplitudes at points separated by more than a few
wavelengths are uncorrelated, then it is easy to show that
the wave intensity will fluctuate by an amount of the or-
der of its average. 2 3 The most familiar example of this
is the speckle pattern created by a laser beam reflected
off' a rough surface. It has recently been understood,
however, that waves propagating through an inhomo-
geneous medium by multiple elastic scattering will create
a fluctuating intensity pattern which is not nearly as
"random" as intuition suggests. First, such patterns will

show on average a higher intensity for backscattering as
a result of constructive interference of time-reversed
pairs of scattering sequences, '4 an eff'ect that has been
observed recently in several experiments. 56 Second, al-
though there are large intensity fluctuations observed, 67

the fluctuations at different points (or in different
modes) must be statistically correlated. The theoretical
and experimental evidence for this comes from the study
of conductance fluctuations in small metal circuits.
It is now understood that these fluctuations occur be-
cause of the high sensitivity of the complex interference
pattern of the (coherent) electron wave function to
changes in impurity scattering potentials. It is found
that the fluctuations in the total transmission of electrons
through the circuit summed over all incident and outgo-
ing channels (which is proportional to the conductance)
is always of order unity. s ' It is easy to show that such

a result cannot be obtained if the fluctuations in each
mode are uncorrelated. " It should be stressed that the
statistical behavior encountered here is only quantum
mechanical in that it derives from the wavelike behavior
of electrons, and thus analogous statistical correlations
should be present in any system in which waves propa-
gate by coherent multiple elastic scattering. In this
Letter we explicitly calculate the statistical correlation
function in different transmitted modes and uncover both
the correlations responsible for the "universal conduc-
tance fluctuations" s '2 and additional novel correlations
which will give a measurable effect in standard wave-
transmission experiments such as light scattering.

We consider the propagation of a coherent scalar wave

through a d-dimensional disordered medium of length L
(in the z direction) and cross-sectional area A =W
where 8' is the sample width. Initially we will assume
that the waves propagate in a waveguide geometry, with

perfectly reflecting walls enclosing the waves in the
transverse directions; later we shall discuss the implica-
tions of our results for an open geometry. The only im-
portant scattering mechanism is assumed to be elastic,
characterized by an elastic scattering length l =vr,
where v is the wave speed and T: is the time between
scattering events. Since we are primarily interested in

studying the correlation and fluctuation behavior of
coherent wave propagation through a disordered medi-
um, we choose to leave out both inelastic scattering and
absorption because these processes destroy the phase
coherence of the propagating wave. We also assume that
kl»1, a condition which is typically valid in light-
scattering experiments, and which insures that the waves
are not localized. We also take L&&l; i.e., we concen-
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trate on the multiple-scattering regime.
The fundamental quantities that we wish to study are

the transmission coefficients T,b, defined as the ratio of
the intensity of the transmitted beam in mode b of the
waveguide, to the incident intensity in mode a (in an

open geometry a and b will correspond to angles of in-

cidence and transmission), at a fixed frequency co. Here
a and b are integers labeling the transverse eigenmodes
of the waveguide outside the disordered region, which
are standing waves with transverse wave vectors q,
=ax/8'. The number of propagating channels N is

given by N = k 'A ( corresponding to q, ~ k). Note
that for a given sample, i.e., for a given realization of the
random positions of all the scatterers, the transmission
coefficients are a very complicated function of the posi-
tions of all the scatterers; in fact, recent work suggests
that they will be sensitive to very small local changes in

the scattering potential, equivalent to the motion of a

single scatterer. "' The T,b are simply related to the
exact Green's function for this sample, G If for propaga-
tion across the disordered region, starting in mode a and

ending in mode b, by's

Tab =vavbGab(z =0,z =L)Gab (z =O,z =L),

Caba'b' Caba'b'+ CaL 'b'+ Ca6a'b'~

where

C )o'b' =D)(T b)(T 'b')8 q. , v F)(aq L)

CaE, b =DE '(Tab)(Tab)[F2(hqaL)+F2(hqbL)),

(2a)

Caj, b =Dig (Tab)(Tab ),

(2b)

(2c)

where the D's are constants of order unity (except when
W& L, in which case Di = p/L), gq =

~ q
(similarly for &qb), F~(x) is a form-factor function

where v, vk, /k, vb =vkb/k are the longitudinal veloci-
ties in mode a and b.

The average transmission coefficient (T,b) can be easi-
ly computed via diagram Fig. 1(a), where the angular
brackets denote an ensemble average over different ran-
dom configurations for the scatterers, to yield (Tab)
=(v, vb/v )I/NL. It is useful to define g =g,b T,b, since
in the electron transport problem it can be shown that
the conductance G =2(e /It)g. '5 Notice that (T,b)-1/
L, which is characteristic of wave propagation in the
multiple-scattering regime in the absence of any absorp-
tion. We note that g=NI/L»1 in the weak-disorder
regime kl & 1.

We would like to study now how the various T,b's are
correlated with one another when the configurations of
the scatterers are changed randomly. This can be a-
chieved by considering the correlation function C,b, b

=(8Tab bTa b ), Where 6Tab = Tab —(T,b). TO 1OWeSt Or-

der in the disorder parameter 1/kl, we obtain
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FIG. l. (a) Feynman diagram for the average intensity
(T,b1 (b) Diagram for C,),b. (c) Diagram for C,/, b (d.) Di-
agram for Ctbib. The diamond-shaped vertex in these figures
is the Hikami vertex (Ref. 16) shown in (e).

F~(x) =x2/sinh x, and

F2(x) 2x '[cothx —x/sinh x].

Note that since kl»1 implies g»1, the three terms in

Eq. (2) are arranged in decreasing order in magnitude.
The above results are derived from the simplest two

diffusion diagrams, Fig. 1(b) (C(') term), by careful use
of energy conservation laws (analogous to Ward identi-
ties in many-body physics). The techniques used are
parallel to those in the calculation of the conductivity
tensor (bo(r1, r2)bo(ri, r4)). ' Qualitatively, the dia-
grams shown in Figs. 1(b), 1(c), and 1(d) illustrate the
processes which lead to C('), C ), and C('), respective-

ly, although literally speaking the diagrams shown in

Figs. 1(c) and 1(d) are divergent. 's In these diagrams
the diffusion ladder represents the process where the
waves which originated froin different incident or trans-
mitted channels explore the same disorder configuration,
and therefore become correlated. We now discuss the
significance of these various contributions.

The first term C ' is only present when Aq, =Aqb,
and is significant only when h,q, (1/L, because the
correlation function, Fi(x), decays exponentially for
x»1. However, C(') makes the dominant contribution
to (bT,b), when hq, =dqb =0, and its contribution alone
gives (bT,b)/(T, b)2=1. Thus C ' represents the famil-
iar large local intensity fluctuations characteristic of
speckle Iiatterns. ' The surprising and novel features of
the Ct' contribution is that it exhibits what we call a
"memory effect"; i.e., it contributes as long as the
momentum transfer of the incident beams equals that of
the transmitted ones. In the case when a laser beam is
transmitted through the sample, this is equivalent to say-
ing that when the incident beam is "tilted" up by a small
angle h, O, the transmitted speckle pattern will on average
"shift" down by the same angle, provided that Ae is not
too large. This eff'ect is obvious in the context of a
single-scatterer problem. That such correlations are still
present in the multiple-scattering situation is less ap-
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parent intuitively. Moreover, the memory effect decays
as a function of Aq L = rrL/W, so that for samples that
are wider than they are long it should be possible to mea-
sure a sizable contribution from this term.

The second term in Eq. (2), C, is smaller than C '

by a factor 1/g, but is dominant if either the incoming or
out~oing channels are nearly the same. Moreover, unlike
C ', it decays very slowly with the momentum dif-
ference: Fq(x)-I/x. Thus this term exhibits a novel
long-range correlation in the transmission fluctuations
which is unique to the diff'usive regime. This term is
dominant in the correlation function between different
outgoing channels for a single incident channel. The
latter situation has been considered recently by Stephen
and Cwilich o and our results are in agreement. This
term can be understood intuitively as the following:
When the two incoming beams are in nearly the same
direction, the multiple-scattering paths for the two
beams immediately inside the sample are forced to be
similar and one would expect a larger correlation in this
case.

The third term in Eq. (2), C(3), gives a uniform posi
tive correlation of all channels, no matter how widely
separated they are in transverse momentum. Because
the correlation is uniform, it is quite subtle to detect. In
each sample it just causes a shift in the background, i.e.,
the spatially averaged intensity of each speckle pattern is
always a little brighter or darker than the total intensity
averaged over many samples, and the crucial point is
that these fluctuations are not decreased by averaging
over a larger and larger spatial region in each pattern. It
is this "infinite-range" correlation that leads to the
"universal conductance fluctuations. " It is readily seen,
with our result for (T,b), that C —1/N, and hence
that

N N

(&g')= Z Cb b= Z
a,b, a', b' a,b, a', b'

When summed over all channels the contributions of
C(') and C(~) to (bg2) are smaller by a factor (1/L)
and (1/L), respectively. However, in an experiment
where the laser light or microwave is sent into a single
channel, and one measures the fluctuations in the total
transmitted intensity, the result is dominated by C(
and is given by p,b, b C,b, b = 1/NL, again in agreement
with Stephen and Cwilich. 2

It is straightforward to extend the theory to include
correlations between waves at diff'erent frequencies, i.e.,
(bT,b(ro)bT, b(ro+Aro)) The finite . frequency differ-
ence introduces a cutoff in the diffusion pole. The de-
tailed results will be presented elsewhere, but essentially
whenever the arguments of F1 and F2 in Eqs. (2a) and
(2b) are less than (pro/ro, )'i, where ro, =D/L, they
must be replaced by (Aro/ro, )'~. Equation (2c) is re-
duced by the same energy correlation factor F(pro/ro, )
found for the universal conductance fluctuations, " i.e.,

F(x) =1 for x&(1 and F(x)-x i for x»1.

We have computed the correlation functions numeri-

cally by the method of Stone. ' We found clear support
for the three types of behavior predicted by Eq. (2). In
Fig. 2(a) we show data for correlation functions of the
form (b't, bb'T, ,b+bb), first for a and a' very different,
and second for a'=a. In the first case there is a small
positive background correlation (which we interpret as
C ) which increases to a maximum when hb =b =b'
(C(')+C(')); in the second case there is a peak when
Ah=0 (C ')+C( )+C(')), decaying to a background
value which is the same as the peak value in the first
case. This is exactly the behavior predicted by Eq. (2).
These data are for g = 1.2 as it is difficult to obtain good
enough statistics to see the C ) and C (3) contributions
clearly for g»1. (We anticipate that this difficulty may
persist in light-scattering experiments for measuring the
C(~) and C(3) correlations. ) This choice of g corre-
sponds to a rather large degree of disorder for which the
two-dimensional localization effect ' is quite observable,
and strictly speaking our diagrammatic results derived in

the lowest order of 1/g do not apply. The fact that the
two results agree rather well suggests that higher-order
corrections to Eq. (2) are probably small. In Fig. 2(b)
we study samples with g»1, comparing (8T, ,b bT, , b+b)
with (BT, b bT, +b b+b) and find rather clear evidence for
the memory effect in C(') (the other terms are too small
to be observed with this statistical accuracy). However,
we do not find quantitative agreement in that for the
latter quantity, Eq. (2a) predicts 0.71 for h, =1 whereas
the numerical result is only =0.2. This discrepancy re-
quires further investigation.
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FIG. 2. (a) C ' and C' correlations: C, b, b+bb (circles)

and C, b, b+bb (squares) with a'»a, bqb L =ebb, for a 20X 20
Anderson model with g=1.2 (disorder parameter w=4),
averaged over 20000 samples. Circles for 6'qg, L»1 conform to
the uniform positive background correlation C, with error
bar =0.02. Squares have the same value for Bq&L »1 as cir-
cles at 6qb L 0, as predicted by the C~ ~ term (peak value

1.71 is omitted). (b) Memory eff'ect: Comparison of
Cab' b+b (circles, ), w', ith C, b, +b b+b (squares) for an L = I 5,
W 45 ensemble of 1500 samples with g = 8.6 (corresponding
to a disorder parameter w 2.5). b'q L ArrL/W The value.
for Bq L 1 is larger in the latter case, as predicted by the C '

term (error bar is =0.05).
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Finally, we briefly discuss the implications of our re-
sults under various experimental conditions. As our re-
sults are derived in a waveguide geometry, a microwave
realization is a natural way to verify our detailed predic-
tions, although it may be difficult to send incident waves
in channels with Sq, &0. In the simplest optical experi-
ment, however, one has instead a laser beam of spot size
W shining onto an infinitely wide scattering medium of
thickness L. As long as W )L, light diffusion (inside the
medium) into areas outside the central region of width
W is not severe, and our results for the waveguide
geometry should still approximately apply, although the
following modifications must be introduced. First, the
incoming and the outgoing beam directions are no longer
quantized and T,b should be interpreted as the ratio of
the integrated outgoing intensity over a solid angle
AII =1/(kW)d ' around direction b to that of the in-

coming beam in direction a. Second, since the incoming
and outgoing momenta have an uncertainty Aq = 1/W,
all the Kronecker delta functions should be understood
to have a rounding of Aq.
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