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Instabilities in Hot Nuclear Matter: A Mechanism for Nuclear Fragmentation
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We analyze the process of fragmentation in heavy-ion interactions from the viewpoint of growth of in-

stabilities in hot, expanding nuclear matter. The growth rates of modes in a medium unstable to small
density perturbations of finite wavelengths are calculated from a kinetic equation. This enables us to
treat the case where the nucleon mean free path is comparable to or greater than the wavelength of the
fluctuation, and the temperature is arbitrary. We estimate for hot nuclear matter the initial conditions
which, after expansion, will result in fragmentation, evaporation, or vaporization.

PACS numbers: 25.70.Np, 05.20.Dd, 21.65.+f

Theoretical studies of heavy-ion reactions at laborato-
ry energies of order 100 MeV per nucleon have used a
variety of different approaches. ' This work has led to a
better understanding of the initial conditions that give
rise to the various possible final states: a nuclear residue
containing a significant fraction of all the particles plus a
small number of individual nucleons (evaporation), a
large number of intermediate-size nuclei (fragmenta-
tion), or a cloud containing mainly single nucleons (va-
porization). In this Letter we show that much insight
into these processes may be obtained by studying the
growth of small density inhomogeneities in a blob of ex-
panding hot nuclear matter. The characteristic size of
fragments, if any, observed in the final state will be
directly related to the length scale of those density fluc-
tuations that grow most rapidly to the stage where they
are comparable in magnitude to the mean density. Our
approach makes direct connection with the usual con-
cepts for describing properties of bulk many-body sys-
tems, allows one to describe dynamical effects, and is

computationally simple. Numerical simulations based
on the Vlasov equation and its extensions and on molecu-
lar dynamics give detailed information about the final
distribution of fragment sizes in a reaction, and it is not
our intention to compete with them. Our aim is rather
to provide a framework for elucidating the basic physical
processes that come into play in the fragmentation pro-
cess. In this spirit we treat the results of simulations as
"experimental" data, to be understood in physical terms.

The basic assumption is that fragmentation arises be-
cause of density instability in the central parts of the
blob. There are three stages to the calculation: the
determination of the time dependence of the density and
temperature of the expanding matter, the evaluation of
the instantaneous growth rate of small density fluctua-
tions superimposed on the uniform expansion, and the
calculation of the factor by which modes grow during the
expansion process. We assume for simplicity that
Coulomb and surface effects may be neglected in calcu-
lating the trajectory of matter, and that the entropy per
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FIG. 1. The coexistence line (dotted), and adiabats
(dashed) for diff'erent values of the bulk entropy per particle, s;
contours of constant mean free path I, in units of fm, and of
Fo(T). The lines on which a mode with q =vtr/R becomes un-

stable are the dash-dotted lines within the coexistence line.

particle of matter in the central part of the expanding
blob is conserved. For the equation of state of hot dense
matter, we use a fit of the Skyrme type to Friedman and
Pandharipande's calculation. In Fig. 1 we show for
symmetric nuclear matter the coexistence curve, which is

the boundary of the two-phase region in thermodynamic
equilibrium, and the isothermal spinodal line, on which
(r)P/Bn)T vanishes. Here P is the pressure, n the num-
ber density of nucleons, and T the temperature. Outside
the spinodal line matter is thermodynamically stable to
small long-wavelength density fluctuations, whereas in-
side it is unstable.

To explore the properties of finite-wavelength distur-
bances, we need the free energy of nonuniform nuclear
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matter. As calculated by a Skyrme interaction, it con-
tains terms of the type (Vn) . To supplement the
uniform-density calculations of Ref. 5 we have added
such terms under the assumption that they are related to
the kinetic-energy density functional in the usual Skyrme
manner, with no additional spin dependence, an assump-
tion that produces a reasonable surface energy. These
terms have the effect of adding to the free energy of a
density fluctuation a term proportional to q2. As a
consequence the lines denoting the onset of instability at
finite wavelength are displaced from the isothermal spi-
nodal, for infinite wavelength. The results shown in Fig.
1 are for wave numbers given by q =vn/R, where R is
the radius of a sphere containing 200 particles, a typical
nucleon number in a heavy-ion collision. The longest-
wavelength modes correspond to v-1: If such a mode
develops sufficiently to disrupt a hot blob of nuclear
matter it leads to the production of a few large frag-
ments (as in fission). A v-3 mode leads to fragments
comparable in size to a particles. The lines given in Fig.
1 show the reduction of the unstable region for finite-
wavelength modes.

To estimate growth rates we employ a natural general-
ization to finite temperatures and finite wave numbers of
Landau's kinetic equation, 6 which when linearized is

given by

(co —
vp q)anp+vp q pep= —r anp~E.

np

ep

Here ai is the frequency, ep is the quasiparticle energy in

equilibrium, vp is the quasiparticle velocity, and Bnp is

the deviation of the quasiparticle distribution from its
equilibrium value np. The right-hand side is the collision
term, in the relaxation-time approximation. The relaxa-
tion time is r, and 8npLE is the deviation from the local
equilibrium distribution function. This is a Fermi func-
tion evaluated with the actual quasiparticle energy
ep+Bep, and shifted chemical potential, mean velocity,
and temperature, chosen so that the total particle num-

ber, momentum density, and energy density correspond-
ing to the local equilibrium distribution function are the
same as for the actual distribution function. The shift in

the quasiparticle energy is given by bep=4+p'fpp'bnp',
where the factor 4 is the spin-isospin degeneracy factor
and fpp is the quasiparticle interaction. The spin-isospin
averaged interaction has the form

fpp(q) =fp(n, T)+pq'+y, p p'.

The coefficient fp is chosen so that the compressibility
calculated from the kinetic equation agrees with that
from the equation of state, while P(n, T) and p~(n, T)
are directly related to the momentum-dependent terms
in the Skyrme interaction. At zero temperature p~ is
identical to ff/p( in Landau theory, and Pq is the
finite-wave-number correction, which is positive for nu-

clear matter. (The Couloinb contribution to the interac-

tion, ze /q, is relatively unimportant for the q's that we
consider. ) Our approach is close in spirit to that of the
polarization potential, with both scalar and vector mean
fields. Since for nuclear matter the finite-wavelength
effects coming from the potential energy are much more
important than those from the kinetic energy, the quanti-
ty (np+q/2 np —q/2)/vp q in the quantum kinetic equa-
tion has been approximated by Bnp/Bep

Details of the solution of the kinetic equation will be
reported elsewhere, and here we give selected results.
The condition for instability to density fluctuations is
1+fp(q)N(T) (0, where fp(q) =fp+Pq2 and N(T)
=4+p( —Bn p/&ep) is the finite-temperature generaliza-

tion of the density of states at the Fermi surface. This
result is a natural generalization of the long-wavelength,
zero-temperature condition F]= —

1 given by Landau-
Fermi-liquid theory. In Fig. 1 we show contours of
Fp(T) fp(0)N(T). The effective mass m is a func-
tion only of density, and has the values —,

' m and —', m at
n=0.071 and 0.187 fm, respectively. (m is the nu-
cleon mass. ) For weakly unstable matter the growth
rate I = —i', when collisions are unimportant, is given
by9

I = —(2q/z) [1+fp(q)N(T))/(vp '),

where (Op) denotes gpOp( —Bng8ep)N(T). This is a
generalization to quantum fluids with nonzero mean free
paths and finite temperatures of hydrodynamic estimates
for classical fluids, ' and of zero-temperature calcula-
tions for Fermi liquids. "

The relative size of the nucleon mean free path l and
the wavelength of a disturbance 2x/q is an important pa-
rameter, since the transition between collisionless and
hydrodynamic behavior occurs at ql-1. Danielewicz's
iinpulse-approximation calculation' of the shear viscosi-

ty rl provides a relaxation time r, by means of the ex-
pression r =15@/N(T)(p v ). (The thermal conductivi-
ty reported in Ref. 12 leads to a relaxation time not ma-
terially different from this one. ) We have then estimated
a mean free path from the expression l=(v2&'/2r, con-
tours of which are shown in Fig. 1. Presumably the
omission of effective-mass effects in the impulse approxi-
mation yields a lower limit to the mean free path. We
thus conclude that for nuclear matter lying within the
coexistence curve, even for the modes q =n/R with the
longest wavelengths, the mean free path exceeds q
Consequently, conditions are close to the collisionless
limit, and far from the hydrodynamic one. It would
therefore appear that the adiabatic spinodal line, which
is relevant for discussion of instabilities in the hydro-
dynamic limit, plays no role.

We next investigate how the growth of density fluctua-
tions depends on the initial conditions for the expansion.
The contour corresponding to an energy per particle, e,
equal to zero (measured relative to rest masses), in the
absence of loss mechanisms, divides initial conditions
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FIG. 2. Contours of initial conditions for which the growth
exponent G, for the mode for which it is largest, falls within the
specified range. The zero-pressure line, which gives the satura-
tion density as a function of temperature, is shown together
with adiabats, selected instability lines, and the zero-energy
contour.

with e & 0, for which bulk matter oscillates about the
saturation density at that entropy, and those with e & 0,
for which bulk matter can expand to infinity. For initial
densities sufficiently close to saturation density, matter
never oscillates into the unstable region, while for initial
densities close to the e =0 line, matter spends a long time
in the unstable region. To estimate the factor by which a
mode can grow we assume that the instantaneous growth
rate in the expanding medium may be approximated by
our results for a static medium. The growth factor is

then simply e, when G =JI dt, the integral being taken
over the part of the trajectory inside the unstable region
for the mode considered. In Fig. 2 we show boundaries,
in the (n, T) plane for the initial state, of regions where
6 for some mode exceeds the values 0, 1, and 3 for a sin-

gle traversal of, or excursion into, the unstable region.
On the lines where G =0, matter just reaches the bound-

ary of the region where the lowest mode is unstable. As
the initial density increases, at constant entropy per par-
ticle, more modes become unstable, and the first modes
to reach growth corresponding to G =1 and 6 =3 have
v=2 and v=3. The growth factor for a given mode has
a maximum near the e=0 line, as we explained, and
above this line G decreases again. The last mode to drop
below both 6 =3 and G =1 has v =3.

To determine which modes can grow sufficiently to
cause fragmentation of the drop, we need to estimate the
level of density fluctuations. For a sound mode in

thermal equilibrium, the fluctuation of the particle densi-

ty is given classically by (Bnq)/n =T/Amc, , where A is

the number of nucleons and c, the sound velocity. A
plausible lower bound on the level of fluctuation as a
mode becomes unstable is given by this expression evalu-
ated when the mode is stable. If we take c, to be
=0.16c, the sound speed at saturation density, we find

(Bnv)'~ /n-0. 04 for all modes with v& 1. Such a fluc-
tuation would require a growth exponent G- —ln(0. 04)
=3 for it to disrupt the nucleus. The initial "seed" fluc-
tuations present when the matter enters the unstable re-
gion may be larger if (1) the matter stays in thermal
equilibrium down to lower densities, since c, will then be
smaller, or (2) before expansion the nuclear matter is
not a stationary spherical blob. For example, a central
collision between two heavy ions would enhance fluctu-
ation for the longer-wavelength, e.g. , quad rupolar,
modes. Breakup could then occur for 6—1.

The initial conditions in the expansion process may be
classified according to the expected final products, as was
done by Vicentini, Jacucci, and Pandharipande in their
simulations for classical argon atoms interacting via a
Leonard-Jones potential. For conditions corresponding
to points on the low-temperature side of the low-

temperature branch of the G =0 contour, matter never
reaches the unstable region, but in a finite system some
particles may be lost by evaporation from the surface.
There is the range of initial conditions, corresponding to
points above this contour, for which matter enters the
unstable region but density fluctuations do not grow
enough to disrupt the matter. This corresponds to
violent evaporation. The high-temperature boundary of
this region depends on the level of fluctuations present
when matter enters the unstable region, and our esti-
mates above suggest that it should lie between the G =1
and 6=3 contours. For initial conditions in which G
exceeds the critical value for disruption, the outcome of
the expansion is fragmentation.

With increasing initial temperature and/or decreasing
initial density, G decreases until matter is not disrupted,
but expands to low density without appreciable growth of
instabilities. This corresponds to complete vaporization.

Thus the qualitatively different kinds of behavior ex-
pected in heavy-ion reactions as the initial conditions are
varied find a natural explanation in terms of the growth
of instabilities. It is surprising that the behavior ob-
tained for hot nuclear matter is remarkably similar to
that obtained for droplets of argon atoms, 2 for which the
interaction and statistics are completely different, but the
equation of state is similar.

We have couched our discussion in terms of the initial
density and temperature of the blob of nuclear matter.
These quantities depend on the equation of state at den-

sities well above nuclear matter density, where it is rath-
er uncertain. It is much better known at subnuclear den-

sities, where the instabilities occur. In our calculations
the high-density region contributes by determining the
velocity with which the matter enters the unstable re-
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gion. Our results may be expressed as functions of
specific entropy and energy density, and one can then
easily map out the initial conditions leading to different
final states, and the curves corresponding to those in Fig.
2, for other high-density equations of state. By experi-
mentally identifying the initial densities and tempera-
tures (or entropies) that lead to the different outcomes, '

one therefore has the possibility of determining the
high-density and high-temperature equation of state.

Simple estimates of Coulomb and surface energies
suggest that, although their inclusion changes the energy
per particle significantly, the modification of the trajecto-
ry of the expanding matter, down to the region of the in-

stability thresholds, is quite small, and the basic scenario
that we have described is unaltered. The dynamics of
the initial stage of a heavy-ion reaction and the creation
of the hot blob require separate consideration, as does
the nonlinear development of the instabilities.
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