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Hopf Bifurcation to Convection near the Codimension-Two Point in a 3He-4He Mixture
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From measurements of the convective heat transport in a normal He- He mixture over the range
—0.018 y+0.015 of the separation ratio y, we found a time-periodic state for y& FACT=

—0.0044.
The dimensionless onset frequency at FACT was 1.42, much larger than the value predicted by linear-
stability analysis for a spatially uniform, laterally infinite system. For FACT& y & y, = —0.010 the bi-
furcation to oscillations was forward while for y y, it was backward. The results suggests that y, is an
additional codimension-two point, rather than a Hopf tricritical point.

PACS numbers: 47.20.—k, 47.25.QV

The stability to infinitesimal perturbations of a pure
conduction state in a fluid mixture heated from below is
a linear problem which in principle can be solved with
arbitrary accuracy. Nonetheless we find that experimen-
tal measurements near the onset of convection in a
binary mixture disagree dramatically with the predic-
tions of linear-stability analysis. We presume that this
difficulty arises from one of the assumptions which enters
into the theoretical calculation. The most likely candi-
date, it seems to us, is the assumption that the convect-
ing state will be spatially uniform. However, it is not at
all clear whether and how this spatial variation should
influence the linear stability.

Convection in binary mixtures heated from below has
become a prototype for the study of a great variety of
linear and nonlinear phenomena because a richness of
behavior can be produced by the variation of two exter-
nal control parameters. One of these is the Rayleigh
number R which is proportional to the temperature
difl'erence AT across the sample. The other is the sepa-
ration ratio tlt which determines whether mass diffusion
helps (tlt & 0) or hinders (tlt & 0) convection. Of particu-
lar interest has been the occurrence in this system of a
codimension-two point at (RCT, tltcT) where a line of
Hopf bifurcations from conduction to time-periodic
traveling-wave (TW) convection for y& VtcT meets a
line of stationary bifurcations from conduction to time-
independent convection for y& tltcT (see Fig. 2 be-
low). Away from VtcT interesting spatial variations of
the TW envelope have been observed. Close to tltcT the
competition between the TW state and the stationary
convection state presents further possibilities for interest-
ing behavior which have yet to be explored in detail.
Every theoretical work had yielded the prediction that
the frequency coo of the time-periodic state which forms
along the Hopf bifurcation line should vanish at tltcT.
More recent linear-stability analyses for a spatially uni-
form, laterally infinite system have yielded a nonzero
top(vtcT), ' but for the parameters relevant to mixtures
which have been used in experiments top(tltcT) is predict-
ed to be very small (of order 10 ' when time is scaled
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FIG. 1. Convective heat transport N —1 as a function of
temperature diA'erence hT across the cell, for y= —0.0092.
Filled circles indicate time-independent N, open circles indi-
cate time-dependent N, and arrows indicate a hysteretic bifur-
cation.

by the vertical thermal diffusion time). We find that
top(lltcT) 1.4, i.e., over an order of magnitude larger
than the predicted value. Thus there is an apparent
disagreement between experiment and linear theory. Al-
though we have been unable to establish with certainty
the reason for the discrepancy, we think that it will
be found in an intrinsic spatial nonuniformity of the
traveling-wave convecting state4 or an instability of the
TW envelope.

The oscillatory state for tlt& ycT has also attracted
considerable attention. Close to titcT we find that the
Hopf bifurcation to this state is not hysteretic, and thus
we presume that it is forward. However, for y
& vt, = —0.010, the Hopf bifurcation is hysteretic and

thus backward. A transition from a forward to a back-
ward bifurcation as tlt is decreased through vt, has been
predicted for this system. However, this transition is
expected to occur smoothly via a tricritical bifurcation,
whereas we find the change to be precipitous, suggesting
that tlt, is yet another codimension-two point. We
presume that tit, is associated with a change in the wave
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number of the TW state, but believe that an explanation
is required as to why this should occur in conjunction
with the transition from a forward to a backward bifur-
cation.

The apparatus and convection cell were similar to ones
used previously. The cell had a height d=0.083 cm,
length 34d, and width 6.9d. We express our results in

terms of N —1, where the Nusselt number N is the mea-
sured thermal conductance normalized by the conduc-
tance of the nonconvecting state. All times and frequen-
cies were normalized by the vertical thermal diffusion
time t, =d /tr Th. e fluid and the relation y(T) were the
same as those of two previous experiments.

Figure 1 displays the dependence of N —
1 on the tem-

perature difference AT across the cell for y= —0.0092.
Starting from a conductive state at small AT the first bi-
furcation (at ATp) was to a state with time-dependent
thermal conductance denoted in Fig. 1 by the open cir-
cles. On the scale of Fig. 1, the enhanced heat transport
of this state is too small to be noticeable. At AT„ this
state became unstable at a backward bifurcation (long
arrow) to a large-amplitude (N —1 = 10 ) state whose
thermal conductance was time independent. To return
to the state of pure conduction, AT had to be reduced to
the point indicated by the short arrow.

The location in the AT-Vr plane of the observed bifur-
cation sequence is shown in Fig. 2. For y& —0.0044
the solid line indicates the onset ATo(tII) of time-
dependent convection, and the dash-dotted line shows
where the time-dependent state made a transition to the
time-independent (stationary) convection state (AT, in

Fig. 1). For —0.0044& @&0.0035 no time-dependent

state was observed; rather, the conduction state became
unstable at a backward bifurcation directly to stationary
convection at the long-dashed line. In order to return
from stationary convection to conduction, AT had to be
reduced to the short-dashed line. For y & 0.0035, the bi-
furcation to stationary convection was forward. We
identify the intersection of the solid line and the dashed
line at y= FACT

= —0.0044 as the coditnension-two point.
The nature of the time-dependent state for the range

of y in Fig. 2 is shown by an example in Fig. 3. In Fig.
3(a) a portion of a time series (whose total length was
800t,, ) is shown for y= —0.0092, e =(4.1+ 0.4) X 10
where e=(AT ATo—)/ATo. Most of the time depen-
dence is instrumental noise. However, a Fourier trans-
form [Fig. 3(b)] reveals two significant peaks, at
ro1=1.76 and r02=2ro1. ' For comparison, the horizon-
tal bar in Fig. 3(a) has a length corresponding to one
period for c01. The amplitude of the oscillations in N is
only about 10 . The day-to-day variations in the ther-
mometry gave an uncertainty of order 10 in the mean
Nusselt number. This necessitated the use of transient
measurements, stepping AT from conduction to a point
in the time-dependent regime, to show that the mean
conductance in this state had a magnitude N —

1 = 2
x 10 . Thus the oscillations modulated the convected
heat transport by roughly 5% of the mean value. This
behavior is consistent with that expected of a traveling-
wave state of finite spatial extent. The instrumental
noise prevented measurement of any time evolution of
the frequency during the transient.
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FIG. 2. Bifurcation diagram showing the locations of transi-
tions between conduction and time-dependent convection (solid
line), time-dependent convection and stationary convection
(dash-dotted line), conduction to stationary convection (long-
dashed line), and the return to conduction from stationary con-
vection as the temperature difference is reduced (dashed line).

FIG. 3. (a) A portion of a time series for the convective
heat transport N —

1 (of total length 800) for y= —0.0092
and c=(4.1+'0.4) X 10 3. The data are dominated by instru-
mental noise. The horizontal bar has a length corresponding to
one period for r0=1.76. (b) Absolute value of the Fourier
transform N of the complete time series for N —I of which (a)
is a part.
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FIG. 4. An enlargement of the bifurcation diagram (Fig. 2)
showing the region where the transition to time-dependent con-
vection changed from forward to backward. Squares, onset of
time dependence as hT was increased; lozenges, disappearance
of time dependence as h, T was decreased; triangles, time-
dependent state lost stability to stationary convection as h, T
was increased; short-dashed line, stationary convection lost sta-
bility to conduction as hT was decreased.
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Figure 4 is an enlargement of the bifurcation diagram
showing the region where the bifurcation to time depen-
dence changes from forward to backward. As hT was
increased, periodic time dependence was first observed at
the square symbols. As dT was decreased, the time
dependence ceased at the lozenge symbols. The time-
dependent state made a hysteretic transition to station-
ary convection at the triangles. The onset of time depen-
dence was seen to be nonhysteretic for y, & y & ycT and
hysteretic (and thus backward) for IIf & y, with y,= —0.010.

Figure 5 shows roI (see Fig. 3) as a function of AT for
y= —0.0089. If the bifurcation to the time-dependent
state is forward, then an extrapolation of roI to ATo gives
the Hopf bifurcation frequency, which may be compared
with the results of linear-stability analysis. This extrapo-
lation is shown in Fig. 6 by the square symbols for
y, & y& AT. For completeness, we have also plotted
roI where the time dependence ceased (as hT was re-
duced) as the lozenge sytnbols for Ilr& y, . Also dis-

FIG. 6. Comparison of the experimentally determined Hopf
bifurcation frequency r00 (squares) with that calculated in Ref.
1 (solid line). Also shown is the frequency at the instability to
stationary convection (triangles) and the frequency where time
dependence ceased as hT was reduced when the bifurcation to
the oscillatory state was backwards (lozenges).

played, as the triangles, is roI at the bifurcation to sta-
tionary convection (AT, in Fig. 5). The triangles at
co =0 indicate values of y where no time dependence was
seen. The solid line shown is the Hopf bifurcation fre-
quency for a linear-stability analysis of a laterally
infinite, spatially uniform system. ' In the range y, & IIr

& AT where the bifurcation to time dependence is for-
ward (filled squares) Fig. 6 reveals rather good agree-
ment between theory and experiment. However, there
are two major differences. In the ideal system, the inter-
section of the stationary and oscillatory instability lines
occurs at AT = —0.00054 rather than the experimental-
ly determined value of AT= —0.0044. Although we
think that there is a genuine discrepancy, one might at-
tribute part of this difference to effects associated with
departures from the Boussinesq approximation and with
barodiffusion, " and to inaccuracies in the relation y(T)
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FIG. 5. Variation of the peak frequency col in the Fourier
transform with h, T for y= —0.0089.
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FIG. 7. Slope of r01(AT) (see Fig. 5) as a function of y.
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used in the experiment. The second difference is not as
easily explained. The linear-stability analysis yields
Cop= 0.1 at FACT, whereas the experimental value is 1.42.
This cannot be attributed to non-Boussinesq effects,
barodiffusion, or forcing in the experiment. These effects
were as large or larger in previous measurements on the
same mixture in a porous medium, which yielded a very
small or vanishing frequency at AT.

Another difference between experiment and theory6
exists along the Hopf bifurcation line near y, . Accord-
ing to the predictions, the Hopf bifurcation changes from
forward to backward via a tricritical bifurcation. This
phenomenon can be described'2 for a spatially uniform
system by the Landau amplitude equation rgb eA
—g~A ~

A —k ~A ~ A, with rp and e real but g(y) and
k (ter) complex. In that case one may show that
(Bru1/Be), -p diverges as —

[ y —y, (
' on either side of

y, . We show in Fig. 7 the slope Brn1/Be= hTp(8—F1/
8(AT) j of data like those in Fig. 5, at various values of

For y) y„ this slope decreases rapidly as y, is ap-
proached; but for y ( y, the slope is essentially constant.
Thus, the experimentally observed behavior of Bro1/Be is

quite different from that expected for a tricritical Hopf
bifurcation. We conjecture instead that the transition at
y, is another codimension-two point associated with a
change in the wave vector of the traveling waves, which
was not considered in the Landau description discussed
above and had not been detected in the theoretical
analysis. s
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