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Quantum versus Statistical Fluctuations in Mean-Field Theories
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General, separate formulas are derived for the quantum and the statistical fluctuations of any opera-
tor. The formalism is applied to the study of these fluctuations for the particle-number as well as the
angular-momentum operators in a realistic case.
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The finite-temperature mean-field theories (Bardeen-
Cooper-Schriefer, ' Hartree-Fock, and Hartree-Fock-
Bogoliubov') have become a common tool in many
branches of physics. The success of mean-field theories
is based, to some extent, on the breaking of symmetries
which allows a considerable enlargement of the varia-
tional Hilbert space so as to include the appropriate
correlations. The breaking of the particle-number sym-
metry in the BCS theory and of the rotational invariant
in deformed nuclei are two well-known examples. The
symmetry breaking is usually related to phase transi-
tions, superAuid to normal fluid in the particle-number
case, and spherical to deformed shape in the angular
momentum one.

The use of symmetry-breaking wave functions induces
(quantum) fluctuations (QF) in the related operators.
At finite temperature, because of the thermal averaging,
there are (statistical) fluctuations (SF) associated with

any operator. In general, both of these will be present,
and I shall call them total fluctuations (TF). Imagine a
temperature-induced superfluid-normal-fluid phase tran-
sition which is being investigated in the BCS approxima-
tion. At zero temperature, the particle-number fluctua-
tions are of quantum origin; at temperatures T below the

critical temperature T„we shall have quantum as well
as statistical fluctuations; at temperatures T larger than
T, only statistical Auctuations remain.

In some situations one has to go beyond the mean-field
approach, in a phase transition, for example. Normally,
one assumes that, at the temperature that the phase
transition takes place, the statistical fluctuations are the
most important. Therefore, the corrections that one ap-
plies to the mean-field theory are purely statistical. This
assumption has, however, no well-founded reason since
there are no calculations that justify it; i.e., some kind of
evaluation is needed. Also, for the comparison of the
theoretical results with the experiments, it is important
to know the roles of both kinds of fluctuations. The aim
of this Letter is to propose general formulas for the
quantum and the statistical fluctuations of any operator
in mean-field theories.

Our starting points is the finite-temperature Hartree-
Fock-Bogoliubov equation

where 8 and 8 are the Hartree-Fock-Bogoliubov ap-
proximation to the Hamiltonian H and the density ma-
trix, respectively, i.e.,

([[a,H], a„])T ([[a,H], a, ]&T (a„a &T (a„a &T

,([[a~,H], a„])T ([[a,H], a„]&T ' (a„a &T (a„a &T

where the subscript T means, as usual, the thermal average expectation value and the a are arbitrary quasiparticle
operators. In the self-consistent basis determined by Eq. (1), which I shall continue denoting by (a,a ), P and % are
both diagonal with matrix elements (E, E) and (f, I f ), res—pectively. —E are the quasiparticles energies and
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f the quasiparticle occupation factors. In this basis, a one-body Herinitean operator can be written as

m (m, n)
(3)

where (m, n) means sum over ordered pairs, i.e., (m, n with m & n). The total fluctuations associated with this operator
are de6ned by

hF =(F )T (F—)T.

This expression can be easily evaluated by means of the generalized Wick theorem; one obtains

&F'-
2 X~IF" I '(fm+f. —2f f.)+ IF".I

'll —(f +f.—2f f.)]~.
m, n

(4)

(s)

In the last expression for the total fluctuations, one cannot disentangle which part corresponds to the QF and which to
the SF in the sense mentioned above.

In order to obtain some insight into the meaning of the different contributions to the total fluctuations, an expression
shall now be worked out whose terms do have a physical interpretation. Since all the calculations can be expressed in

terms of the density matrix, Eq. (2), we shall find it convenient to work with pairs of fermions. These possible pairs are
(a a„), (a a„), with m & n, and their Hermitean conjugates; ordering of the states by growing energy E ~ E + &

guarantees that the pairs (at a, ) t correspond to excitations of positive energy. To evaluate the fluctuations, one has to
calculate (F2)T and (F)T2. If we take into account that the density matrix is diagonal, the generalized Wick theorem
guarantees that the only nonzero expectation values are those with an even number of creator and annihilation opera-
tors, i.e.,

&F&T =F +ZF f
m

(F )T=F +2F QF~~f~+QFkkF~~((akak)(a~a~))T
m k, m

+ IFkI'F„"((ajaI)(a a„) )T+Fl['F'„'((ajaI) (a a ))7
(k, l m, n)

+F$(F „&(aj'a()(a„a~))T+Fji 'FpP&(aiak)(a~a„)&TI . (7)

Because of the sum on ordered pairs, only one contraction is nonzero in the last four terms whereas in the third term on
the right-hand side there is one additional contraction; i.e., one can write

QFk)F'' ((ajak)(a~a~))T= QFk)fk + g'Fk)F" ((ajak)(a~am))T .
k, m , k k, m

The prime on the sum is just to indicate that the contraction inside one pair has been extracted; in this way all pairs are
treated on an equal footing. From the four factors enclosed in the curly brackets in Eq. (7), the first and fourth terms
can be related to the second and third terms just by commuting the pairs. Taking into account these two considerations
in Eq. (7), one obtains from Eq. (4)

aF = tFJI'F„'~&[(ajaI), (a a„) 1)T+Fgl'F, ([(a~ak), (a a„)])TJ
(k, l m, n)

+2 IFII,'F'„'&(ajai) (a~a„)&T+Fgl F „'&(ajaI )(a„a )&T]
(k, l m, n)

+ g'FII/F" &(ajak)(a a~))T. (9)
k,m

The first two terms of this expression are identified with the quantum fluctuations ~$, and the last three with the sta-
tistical fluctuations dd'). The evaluation of the expectation values leads finally to

~F$= X [IFmn I (f f )+ IF" I'(I f f )]- (lo)
(m, n)

&6=ZIF".I'f (I —f.)+2 2 ~IF'! I'f.&&
—f )+ IF'Ol'f. f.]

m (m, n)

The reasons for these identifications are the following: (I) The processes taking place in the SF [see the last three
terms of Eq. (9)] are the thermal average of the dispersion of pairs with energy E ~ 0. (2) In the high-temperature
limit, T ~ and f„=0.5, the QF vanish as they are supposed to do. (3) In the zero-temperature limit, f„0,the SF
go to zero and the QF to P~ „i I F~„ I as one expects. (4) In the case that a given symmetry (for example, the particle
number) is conserved in the mean-field approximation, and the density matrix is invariant to rotations in the associated
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gauge space, i.e.,

Q —efaFQ e iaF (12)

=(1 f —f„)F—„=0. (13)

Condition (13) guarantees [see Eq. (10)], that the QF of
the operator associated with the conserved symmetry are
zero. In the same way in a phase transition, from a
superfluid to a normal fluid, for example, the QF of the
particle-number operator will vanish after the transition
has taken place.

To illustrate the formulas, I shall study the behavior of
the fluctuations of some operators for the nucleus '6 Er
at high excitation energy and angular momenta. For de-
formed superfluid nuclei, one finds, in mean-field
theories, a phase transition to normal fluid induced by
two parameters, the temperature (excitation energy),
and the angular frequency (angular momentum). The
finite-temperature Hartree-Fock-Bogoliubov equations
were solved with the configuration space and Hamiltoni-
an of Baranger and Kumar. 6 The results for deforma-
tion parameters, gaps, and other quantities are given in

Ref. 7; in particular, one finds that for temperatures
T~ 0.5 MeV (~ 0.6 MeV) the gap of the neutrons
(protons) vanishes for high angular momenta even at

(a} 154E„

Obviously, this is also true for an infinitesimal rotation
where % can be expanded. To first order in a, one ob-
tains

%=S+iurtF, S]=S-(f f„)F—".

8
I(a)

T:50
6&

I I

164E„

lower temperatures. For temperatures smaller than 1

MeV, investigated in Ref. 7, one does not find any shape
transition.

In Fig. 1 the QF are shown for the particle-number
operators for neutrons and protons as a function of the
angular frequency co for different temperatures. One
sees a structure strongly correlated with the behavior
(see Ref. 7) of the gap parameters at the given tempera-
tures and angular frequencies. As expected, they go to
zero when the gap parameter (the cause for the base
states not being eigenstates of the number operator) van-
ishes. In Fig. 2 the total particle-number fluctuations
are shown in a display similar to Fig. 1. At zero temper-
ature, they are exactly the same as in Fig. 1, since there
are no SF. At T =0.2 MeV and small ro values, we find

almost no difference between the total and the quantum
fluctuations; i.e., the SF are very small, for medium an-

gular frequencies (still T=0.2 MeV) the TF are larger
than the QF, and for high frequencies the TF are rather
constant. What is observed here is that the SF are ro

dependent as long as the QF are not zero. The reason
for this is the ro dependence of the gap parameter. A
large gap causes large quasiparticle energies and there-
fore small quasiparticle occupation factors f . The pair-
ing correlations which induce the QF inhibit the SF! At
T 0.4 MeV and small ro values, the TF are already
larger than the QF; the structure they show is just
caused by the latter. For T values 0.6, 0.8, and 1.0
MeV, the TF are flat and parallel to each other as one

(b)
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FIG. 1. The quantum Auctuations of the particle-number
operators for neutrons (upper part) and protons (lower part).
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FIG. 2. Same as Fig. 1 for total fluctuations.
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FIG. 3. The quantum fluctuations for the angular-

momentum components.
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would expect for SF.
To illustrate the behavior of the fluctuations for an

operator not related to a phase transition, at least in the
temperature range we are looking at, in the next two
figures the fluctuations of the angular momentum are
shown. Figure 3 displays the QF of the J„J», and J,
operators. The fluctuations in J„and J are similar in

magnitude because the nucleus remains, for all T and co

values, approximately axially symmetric; this is also the
reason why AJ) (2 is that small. It is interesting to ob-
serve that the QF in J, are zero at co =0 for all tempera-
tures: The reason is that the mean-field approach for the
Hamiltonian, at this co value, commutes with J, . At
higher angular frequencies, when we work with the
Hamiltonian H' H —coJ„, this is not the case anymore.

For small co values and T~ 0.4 MeV, an increase in
the QF of J„and J» is observed; this is due to an in-

crease of the deformation parameter caused by the
quenching of the pairing correlations by the temperature.
The structure at T 0 in all the three cases is produced
by the alignment of particles during the cranking. At
higher temperature, when the shell eff'ects are less impor-
tant, rather smooth curves are obtained. The general in-

crease of the J, fluctuation with co is due to the fact that
the nucleus becomes somewhat triaxial. The general de-
cline of the QF for T)0.8 MeV is due to a decrease of
the total deformation for those temperatures. In Fig. 4
the total fluctuations for the same three operators are
shown. We see that in this case of no phase transition,
the TF always grow with increasing temperature. We
also notice that the relative increase in the TF with
respect to the QF is much larger for the J, operator than
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FIG. 4. Same as Fig. 3 for the total fluctuations.

for the J„and J» operators; this is due to the fact that
the QF in the case of the J, operator were inhibited by
the approximately conserved axial symmetry.

In conclusion, I have derived formulas for the quan-
tum as well as the statistical fluctuations of a system de-
scribed by a finite-temperature mean-field theory. The
formulas have been applied to investigate the fluctua-
tions of the particle-number and the angular-momentum
operators for a well-deformed superfluid nucleus.
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