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Symmetry of Elastic Tensor: Hydrodynamics versus
Lattice Dynamics

In an interesting recent Letter Nelson' has suggested
that there are, in general, 45 independent elastic con-
stants, if a long-wavelength lattice-dynamical calculation
is used. He obtained this nonclassical result (45 instead
of 21 elastic constants) by coupling optical phonons to
the acoustic phonons. The assumption of small frequen-
cies is not being made in this type of description. Here
we investigate how this situation can be analyzed in a
hydrodynamic approach. We find that of the 45 elastic
constants 9 are surface and only 36 are bulk elastic con-
stants. We also discuss that this nonclassical result is

relevant for intermediate frequencies only.

By hydrodynamics we mean the macroscopic descrip-
tion of condensed systems (c.f. , e.g. , Forster and co-
workers and Martin, Parodi, and Pershan3 for an over-
view) which is applicable to excitations relaxing with
vanishing frequencies in the limit of very large wave-

lengths. One obtains in this regime —considering only
truly hydrodynamic variables, i.e., only those without a
gap in the excitation spectrum —the classical value of 21
different elastic constants in the general case. More
constants can thus only arise if nonhydrodynamic vari-
ables, e.g. , those connected with optical phonons, are
considered.

In the last few years it has turned out that under cer-
tain conditions one has to generalize hydrodynamics by
incorporating dynamic degrees of freedom into the long-
wavelength description, which relax in a very large, but
finite time. This approach has been called macroscopic
dynamics and it has proven to be a fruitful one for a
large class of systems including incommensurate sys-
tems, liquid crystals close to a phase transitions, the
superfluid phases of 3He, tilted hexatic liquid crystals,
and even propagating incommensurate structures in

nonequilibrium systems; further examples are discussed
elsewhere. '

If we take into account (in addition to the displace-
ment u) nonhydrodynamic variables, like w, the relative
displacement of atoms of different sorts, the elastic ener-

gy takes the form

2f =Ctjk((Vjut)(Vluk)++ijwiwj +2BijkwkVj ui

+Dt/k/ (Vjwi ) (Vi wk ) +E/j kt (Vj ui ) (Vi wk ), (1)

where the coefficients A;j refiect the gap of the optical
mode w. Far away from any phase transition w is aver-
aged out on sound or ultrasound time scales and Eq. (1)
reduces to the ordinary elastic energy. Somewhat closer
to a phase transition, where w becomes soft, but is still
fast enough so that w is faster than u, one obtains after
elimination of w an effective elastic energy

2f =C;,ki(V, u;)(Viuk),

where C does not have the symmetry C jk( =Cj;ki =Cjtk
of the true elastic tensor. That part of C that has a

Cjkt =C;tkj symmetry gives rise to (36) bulk effective
coefficients and the other part to (9) surface effective
coefficients.

Very close to the phase transition, where 2 (and 8)
vanishes, one has to keep both u and w in Eq. (1) and
the number of effective elastic coefficients is the sum of
the C, D, and E coefficients, which exceeds by far the
number 36 found in the intermediate-frequency regime.
Similar considerations are possible for the piezoelectric
coefficients, where we find for the intermediate regime 18
bulk and 9 surface terms (compared with the 10 bulk
and 8 surface terms in the hydrodynamic regime); the
latter are surface terms, if curl E is zero.
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