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Vacuum Tunneling Probe: A Nonreciprocal, Reduced-Sack-Action Transducer
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The vacuum tunneling probe used in the scanning tunneling microscope represents a new class of non-

reciprocal electromechanical transducers. Nonreciprocity implies reduced back action and consequently
increased sensitivity over conventional, reciprocal transducers. A vacuum tunneling probe may reach the

quantum limit for a measurement of the position of a macroscopic mechanical oscillator even with use of
a non-quantum-limited amplifier. The quantum limit is enforced by the momentum shot noise associat-
ed with the tunneling current.

PACS numbers: 61.16.Di, 06.30.Bp, 06.70.Mx, 85.30.Mn

The application of vacuum tunneling in the scanning
tunneling microscope' and the atomic force microscope
has made it possible to monitor the motion of extremely
small masses, even down to single atoms. A recent pro-
posal to use a vacuum tunneling probe as the transducer
for a gravitational-radiation detector 3 has prompted our
investigation of the sensitivity limits of transducers
which are based upon vacuum tunneling, and we have

found some surprising results. The vacuum tunneling

probe is representative of a new class of active, nonrecip
rocal electromechanical transducers which have greatly
reduced back action on the mechanical element being
monitored. Consequently the precision in a position
measurement of a harmonic oscillator can be virtually

independent of the noise of the amplifier following the
tunneling probe. This follows from the nonreciprocity of
the tunneling probe and is in sharp contrast with conven-

tional reciprocal transducers in which the back action
enforces an "amplifier limit" for the sensitivity. Our
analysis shows that the quantum limit for a position
measurement of a harmonic oscillator is enforced by the
momentum shot noise associated with the tunneling
current.

Weber-bar gravitational-radiation detectors are in-

tended primarily to search for impulsive gravitational-
wave events from supernova explosions which are expect-
ed to be the strongest common astrophysical sources.
Thus, in our analysis, we restrict our attention to impulse

detection, although in other applications measurements
of sinusoidal or steady forces may be required. A useful

figure of merit for the detection of an impulse by a har-
monic oscillator is the impulse noise number, nI, which is
defined as the number of quanta which would be deposit-
ed in the unexcited oscillator by the minimum detectable
impulse, i.e., an impulsive force which gives a signal-to-
noise ratio of 1. Note that, in general, both the energy
and the phase of the mechanical oscillator will change

upon reception of an impulse depending upon its arrival
time relative to the oscillator phase.

Conventional transducers which operate by the modu-
lation of a capacitance, inductance, or a piezoelectric
crystal are reciprocal and consequently obey the follow-

ing constraint:

nl~ ng~1,
where nz is the amplifier noise number defined by
nq =kBT~/htop in which ka is Boltzmann's constant, top

is the angular resonant frequency of the mechanical os-
cillator which is being monitored, and T~ is the noise
temperature of the amplifier which is used to monitor the
transducer output. Thus, the smallest impulse noise
number that one can achieve is equal to the noise num-

ber of the amplifier. Phase-insensitive linear amplifiers
must obey the quantum limit, np ~ 1, so that one can
view the amplifier as enforcing the quantum limit for the
harmonic oscillator. We show below that a transducer
which uses a nonreciprocal tunneling probe may have an

impulse noise number, nt, which is much less than ng,
but that the shot noise which accompanies the tunneling
current enforces the quantum limit nt~ 1. The quan-
tum limit must be obeyed by the tunneling-probe trans-
ducer because the position of the harmonic oscillator,
which is not a quantum nondemolition observable, s is the
measured quantity.

How may a tunneling probe be used in a practical
transducer? The area which a tunneling probe monitors
is extremely small, and so to construct a gravitational-
wave antenna transducer some type of mechanical
impedance-matching element, which transforms the
motion from the large antenna to a much smaller mass,
must be used. A number of such schemes have been pro-
posed and studied ' but it is difficult to achieve a large
eff'ective-mass ratio. We believe that the tunneling probe
will probably be of most use in integrated microelec-
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tromechanical devices which measure forces. The back-
action noise of the amplifier becomes a dominant factor
for very-low-mass devices and so the reduced back action
of the tunneling probe may offer a substantial improve-
ment in sensitivity.

The tunneling probe itself may be modeled as a resis-
tor in which the resistance is exponentially dependent
upon the separation of the probe tip from the surface of
the object to be monitored. If the separation of the tip
from the object is d x(t—), in which d is the nominal

gap and x (t ) is the small time-dependent part of the

gap, we may express the probe resistance as

R =Rpexp[ —2xx(t)],

where Rp is typically 10 A for a nominal separation d
of several angstroms and x=(2m, p)'t /t't, with p the
probe work function and m, the electron mass. In our
analysis we assume that the tunneling probe is dc voltage
biased by the source Vd, so that a current ld, = VdJR
flows through the probe. We also assume that the resis-
tance of the tunneling probe is much greater than the
internal resistance of the bias source or amplifier. The
electrical schematic of the transducer is shown in Fig. 1.
We represent the noise intrinsic to the tunneling probe
by a voltage source in series with R. Since we assume
that the probe is voltage biased and grounded through
the current amplifier the fluctuations in the tunneling
probe may be adequately represented by the voltage
noise source, Sv, 2eld, R2. In the limit of vanishing dc
current we must have Sv, 4kaTR, which is the open-
circuit Johnson noise of the tunnel resistor, but we will

assume throughout that this limit is avoided. The signal
is sensed by a current amplifier with noise that is repre-
sented by an input voltage noise generator, with spectral
density Sv„and a purely additive current noise source
with a spectral density St, . We also include a capacitor,
C, which shunts the tunnel junction to represent the

stray capacitance of the probe.
The analysis proceeds as follows. If we assume that

2xx(t) is small, so that the exponential may be expand-
ed, we find that the current developed through the tun-
neling probe due to a displacement x(t) is given by

i =2xld, x(t). (3)

Referring to the equivalent circuit in Fig. 1 one may cal-
culate the fluctuating current at the output of the
amplifier, and with Eq. (3) we find the spectrum of the
apparent displacement fluctuations:

S„St,+ (1+tpfR C )+
4x I, ,

' R R

(4)

The apparent displacement, x,zz, is obtained from Eq.
(4) by

xapp Sx,~(&meas/2) (5)

in which we multiply by the square root of the measure-
ment bandwidth to find the apparent displacement.

In addition to the apparent motion of the mechanical
oscillator represented by Eq. (4) there is an actual fluc-
tuating displacement of the mechanical oscillator caused
by the back-action force of the transducer and its
Brownian motion.

There are two sources of the back-action force. Each
electron which tunnels from the probe to the mechanical
oscillator carries momentum. The fluctuating current in
the tunneling probe therefore gives a fluctuating momen-
tum transfer. The other source of back action is the ca-
pacitance of the probe. There is an electric field in the
capacitor so that the fluctuating amount of charge on the
tunneling probe produces a fluctuating force. The spec-
tral density of the fluctuating force is therefore

Idc S R Sv

LJ

Sv, Sv,'+ ' +c'z's
e2 R2 R2 Vly (6)

dc

S,
I

1P 1P

current
amplifier

FIG. 1. The electrical schematic of the vacuum-tunneling-
probe transducer and the amplifier. The tunneling probe rep-
resented by R is dc voltage biased by Vd, and the shot noise as-
sociated with the dc current is represented by a voltage source
with spectral density S& . The capacitance of the probe is rep-
resented by C. The amplifier is shown as an ideal current
amplifier with an input voltage noise generator with spectral
density SI, and a purely additive current noise source with

spectral density Sz, . All noise sources have a frequency-
independent spectral density.

in which p is the momentum transferred to the mechani-
cal oscillator by one electron, e is the electron charge,
and E is the electric field in the capacitor C. The first
terms in Eq. (6) represent the back-action force from the
tunneling probe and the last term, the back action from
the capacitor. The displacement of the oscillator in a
time interval i „,which is much less than the oscillator
relaxation time is given by

s) ~meas
/2

Xba =
mcoo 2

&/2

(7)

where m is the mass of the mechanical oscillator and cop

is its resonant angular frequency.
The displacement of the oscillator, in a time interval
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~m,», due to the Brownian motion is given by"

xaM [kT~ »/mcopg] '

where Q and T are respectively the quality factor and the temperature of the mechanical oscillator. This result is valid
for a measurement time which is much less than the relaxation time of the oscillator, r „,«g/coo.

We combine these results and have the actual displacement of the harmonic oscillator in a time interval 7

&act
2kaT p'(Sv, +Sv, )

mog e 2m ~co)R 2

C E Sy

m co)

&meas

Thus we have an expression for the total displacement noise of the form

&/2 —i/2
&noise ~&meas+ ~&meas s (10)

where A is given by Eq. (9) and 8 is obtained from E~s. (4) and (5). The optimum r „,is given by r „, 8/A and

therefore the minimum value of x„„ is x;„2(A8)' 2. To form an expression for ni, the impulse noise number, we

note that the minimum detectable displacement, x;„, is related to the minimum detectable impulse, p;„, by

x;„pm;„/mroo and that ng (pm;„/2m)/hroo. After some manipulation we find the following expression for nI

ni= 1+ + (I+ro)R C )
SI R Sy,

hx. Sv, Sv,

Sv, Sv,R C E e 2kaTmrooe2R2
1+ + +

Sv Syp Sv,Qp'

We have not yet discussed p, the momentum transfer
per electron tunneling event. Measurements of the tun-

neling transit time are consistent with the tunneling elec-
trons having the Fermi velocity, '

p hkF. If we use

p hr we find that the leading factor is 2. '3 On the
other hand each tunneling electron introduces a momen-
tum uncertainty to the bar. The electrons which tunnel
from the tip are localized to near the surface of the bar.
This constitutes a measurement of the electron position
which has a position uncertainty of hx=(2L. ) ' and

hence, with use of the uncertainty relation Axe 6/2,
an uncertainty of the momentum transferred by each
electron of dp hx. Even in the limit where the Fermi
momentum approaches zero the minimum value of p is

therefore br. Both contributions to p in Eq. (11) give a
result close to the quantum limit, ni =1. We do not at-
tempt to settle the issue of the exact value of the quan-
tum limit in this Letter.

The above expression accounts for the Brownian
motion intrinsic to the mechanical oscillator and the
back action of the fringing capacitance of the tunneling
probe. We now calculate how close to the quantum limit
one may approach in a realistic experimental config-
uration. We use the following physical parameters:
Id, =10 A, R =10 0, E=10 V/m, C=10 ' F,
and pF =1.4 x 10 kg-m/sec. The mechanical oscilla-
tor is assumed to be a cantilever or similar structure
which could be fabricated from silicon with anisotropic
etching techniques to dimensions on the order of 10 pm.
We assume m-10 " kg, coo 2nx103 rad/sec, T=l
K, and g 10 . The amplifier is assumed to have

Sv, =1.4X10 ' V /Hz and S1,=3.2X10 A /Hz
which corresponds to an amplifier noise number of
n~ =10 . We calculate that Sy, =3.2X10 ' V /Hz.

These values give nI 25. In this case the back action of
the stray capacitance accounts for the noise in excess of
the quantum limit. If the capacitance were 100 times
less, say 10 ' F, it should be possible to reach the quan-
tum limit. Point-contact junctions have been reported
with capacitances in the 10 ' F range. '

We emphasize that a conventional transducer which is

reciprocal would have obeyed the limit ni =np =10 .
Our calculations show that the reduced back action of
the nonreciprocal tunneling probe allows a reduction of
the noise by a factor of 40000. The near elimination of
the transducer back action accounts for this improve-
ment and the small remaining back action of the tunnel-

ing probe combined with the shot noise enforces the
quantum limit for the measurement of the harmonic-
oscillator position.

We have shown that the tunneling probe, which is al-

ready in wide use, has the remarkable feature that it is

nonreciprocal in much the same way as a transistor, both

being examples of active two-port devices. We have also
shown that nonreciprocity allows one to greatly exceed
the amplifier limit obeyed by conventional transducers
and that the quantum limit is enforced by the momen-

tum shot noise associated with the tunneling current. If
the practical difficulty of mechanically impedance
matching a tunneling-probe transducer to a massive
gravitational-wave antenna can be solved it may off'er a
new way to reach the quantum limit for gravitational-
wave detectors. We also note that since the tunneling

probe is so well suited for the monitoring of small

masses, in which back-action noise is a dominant factor,
it may become an important strategy for miniaturized
integrated electromechanical sensors.
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