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Color-Induced Transition to a Nonconventional Diff'usion Regime
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It is shown that the negative diffusion coefficients exhibited by the current approaches to the Fokker-
Planck equation for non-Markovian and bistable processes result from assuming the diffusion process to
be stationary. The rejection of this assumption leads to predictions on the escape over a barrier agreeing
with the physical arguments pertaining to the extremely colored-noise regime.

PACS number: 05.40.+j

(2)

Many groups' " have recently focused their attention on physical systems described by the stochastic differential
equation,

x =y(x)+ tlr(x)((t),
where g(t) is a colored Gaussian noise, with vanishing mean value, and correlation function defined by

(&(0)&(t))= (Do/r)e

where r is the correlation time. It has also more recently been shown that the results of seemingly different theories can
be recovered within the context of the projection operator method, ' which leads to the following Fokker-Planck-type
equation for a(x;t), the probability distribution of x:

o(x;t) =
Bt

a DOB By(x)+ y(x) y(x) ds exp[ —[r ' —II(x)]s[ o(x;t)+
Bx Bx Bx 4O (3)

For the definition of II(x) see Ref. 2. It must be
remarked (a) that this equation is the result of a pertur-
bation calculation at the second order in the interaction
between x and ( where the higher-order terms result in

nonstandard Fokker-Planck terms, ' and (b) that it is

based on the initial condition p(x, g;0) =cr(x;0)p,q(g),
~here p(x, g;0) is the initial probability distribution of
the whole system and p,q(() is the equilibrium distribu-
tion of the variable g [p,q(g)-exp( —

g r/2DO)). This
means that the x and g systems, originally statistically
independent, are brought into contact with one another
at time t =0. Equation (3) allows us to predict the sub-

sequent behavior of the x system.
It is usually assumed' that a steady state is reached

by the system for t ~. Thus the time t appearing as
the upper integration limit on the right-hand side of Eq.
(3) is replaced by ~. The resulting equation, from now

on referred to as standard Fokker-Planck form (SFPF),
is affected by this basic fault: There are critical regions
where the diffusion coefficient turns out to be negative.
This fault essentially affects the short-time expansions of
Refs. 7-9 and, after a critical value of r, r„even the Fox
theory.

This difficulty has so far elicited two different kinds
of reactions: Peacock-Lopez, West, and Lindenberg '0

showed that those properties that do not specifically in-

By Do B' exp[[ad'(x) —ra(x;t) = — +
Bt

' B«Bx' y'(x) —r

volve cr(x;t), in the critical region may be well represent-

ed by the SFPF. Fox and Roy, " on the contrary, to
bypass this difficulty had recourse to a generalized ver-

sion of the so-called decoupling theory, '2 which consists
of replacing II(x) with a suitable negative value indepen-
dent of x. An approximation of this kind, however, does
not reproduce interesting effects of colored noise such as,
for instance, the transition from one- to two-mode distri-
butions. 'i

The basic aim of this Letter is to show that if Eq. (3)
is left as it is (i.e., the upper limit of the time integration
is not replaced by ~) the artifact of negative diffusion
coefficients is bypassed. Furthermore, this allows us
safely to attain the large-r region, where its predictions
on the escape process are seen to ftt the physical argu
ments rigorously valid for z

We shall focus on the bistable system

y(x) =ax —Px' (4)
in the additive case [y(x) =1). Then we shall adopt
the local linearization approximation ' II(x) = p'(x)
—:dp(x)/dx. This approximation holds for Do 0 and
it has the nice effect of making the terms higher than
second order in Eq. (3) vanish. This local linearization
is consistent with the spirit of the Kramers theory. '

Thus we must solve the following equation of motion:

cr(x;t)
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The function p'(x) changes sign at x= ~b where b
—= (a/3P) 't . In the side regions —pe & x & b-,
b & x & ~, the function 41'(x) is always negative thereby
leading the space- and time-dependent diffusion
coefficient to a finite stationary value. In contrast, in the
region around the barrier b~—x & b, p'(x) is always
positive semidefinite with values ranging from 0 (at the
boundary) to a (at x =0). Thus, when the critical condi-
tion r =r, = I/a is reached, the diffusion process at the
top of the barrier is prevented from attaining the kind of
stationary state that is conventionally evaluated by one' s

setting err(x;t)/at -0.
The divergence of the diffusion coefficient for t

triggered by the color of the noise (r & r, ), is not a
theoretical artifact: In the linear case of the inverted
parabola, Eq. (5) is easily proven to lead to an exact re-
sult. '4

To prove that with Eq. (5) a correct equilibrium dis-

tribution can be reached even in the critical region
r & r„we used as initial distributions the steady-state
solutions of the SFPF with y(x) 1 and II(x) p'(x),
but with the population of the region where the SFPF re-
sults in negative diffusion coefficients set to vanish (note
that a vanishing population in this region is rigorously
exact only in the limiting case r ~, as it has been
proved9 that the region around the barrier at finite
values of r is characterized by a finite population). Thus

by construction, the initial population at x=0, o(x;0),
vanishes throughout the whole critical region r, & r & ~.
Figure 1 shows that cr(0, t) is always semidefinite positive
even beyond the threshold r„where negative values of
the population should be reached according to the SFPF.

A basic tenet of all the theories of chemical reaction
processes is the assumption that the reaction process is

characterized by a stationary current. '5'6 However, we

see from Eq. (5) that when the critical value r, is
reached, the diffusion coefficient diverges for r pp over
a region the size of which increases upon increase of r
from the point x =0 (at r = r, ) till it covers the whole in-
terval —b &x &b (at r=~). This makes it impossible
to use the standard analytical approaches. ' '

We thus carried out the following idealized experi-
ment. At the initial time t =0 the system is placed in an
initial distribution obtained from those used to obtain the
results of Fig. 1 by our setting the population equal to
zero at x & 0, and the interaction with the ( system is
switched on. We then solve Eq. (5) numerically and
monitored the time variation of the reactant population,
n(t) =I o(x—;t)dx, which after a transient time of the
order 1/a turned out to be a perfectly exponential func-
tion of time. The results of Figs. 2 and 3 were obtained
by the assumption that the inverse of the rate of this ex-
ponential decay can be compared with the mean first-
passage time T.

In the long-r region, it is possible to derive an analyti-
cal formula for the mean first-passage time with use of
the following physical arguments. When the condition
r» 1/a applies, the Brownian particle is virtually always
found to be in a stable equilibriutn position given by one
of the three roots of the equation p(x)+(=0. This
equilibrium position gradually changes in time as an
effect of the slow time dependence of g. When the criti-
cal value g, ~ (4a 3/27P) '~, corresponding to the
disappearance of the barrier, is reached, the particle
jumps from the positive to the negative side of the x axis,
and vice versa. By evaluating the first-passage time for g
to reach the critical value (, (g is a stationary
Gaussian-Markov process with damping I/r) we obtain

T (27Dozr/8 Voa) ' exp[(8 VQ/27Do) ar],
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FIG. 1. The probability distribution cr(x;I) at x 0 is plot-
ted as a function of time for various correlation times r: (curve
a) 0.75, (curve b) 0.99, (curve c) 1.5, (curve d) 2.5. The value
of the strength of the noise is Dp 0.114 and a P l.

FIG. 2. T vs r for a p 1 and Dp equal to (curve a) 0.06,
(curve b) 0.08, (curve c) 0.10, and (curve d) 0.15. Full lines
denote Eq. (6), whereas squares denote the result of the nu-
merical calculation with Eq. (5).
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w here the height of the barrier is given by Vp=a /4P.
This expression implies also the assumption that az
»27Dp/8Vp (for the arguments of the Kramers theory
to be applied). Surprisingly enough, the numerical solu-

tion of Eq. (5) shows that the slope of log(T/Tp) (Tp is

the first-passage time in the white-noise case) as a func-

tion of z as predicted by this analytical law, i.e.,

(8Vp/27Dp)a, is already exhibited at az~ 1.5. The nu-

merical solution of Eq. (5) results indeed in log(T/Tp)
being a straight line virtually parallel to that resulting
from the long-z expression above. It turns out that in

the region from az= 1.5 up to the largest values of z ex-
plored with our numerical solution of Eq. (5) the numer-

ical results are satisfactorily fitted by the following

analytical expression:

T=exp(Vp/Dp)[x/a J2+(zz)' (27Dp/8aVp)'~ exp(8Vpaz)/27Dpl.
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FIG. 3. First-passage time T vs the correlation time r for
a =P = I and DO=0. I. Curve a represents Eq. (8), b Eq. (7),
and the lozenges the values obtained from the numerical solu-

tion of Eq. (5). Inset: T/TO (where To is the first-passage
time for white noise) is plotted for Do equal to 0.15 (crosses),
0.10 (squares), and 0.06 (asterisks). The independence of
T/To from Dp for small correlation times is evident.

This expression satisfies the obvious condition of match-

ing the long-z expression above with the white-noise lim-

it. However, it serves only the purpose of emphasizing
the agreement of the numerical solution of Eq. (5) with

the slope of log(T/Tp) predicted by our analytical ex-
pression for z ee (the agreement on the slope is re-
markable indeed, see Fig. 2).

This is a central result. The slope of log(T/Tp) as a
function of z as predicted by the mean-field formula'

T = exp (1+2az)z ~o

ale
is 1 order of magnitude larger than (8Vp/27Dp)a, there-

by implying that the mean-field theory misses the basic
physical aspects of that linear dependence. This linear
dependence reflects the transition from a standard
diffusional regime to a new one, where the particle un-

dergoes a deterministic motion in a slowly fluctuating po-
tential, driven by the stochastic motion of g. It is re-
markable that this new behavior, which would seem to
be incompatible with the use of a Fokker-Planck descrip-
tion, is actually reproduced by the numerical solution of

Eq. (5). This is a central result, because it sheds light on
the real physical reasons behind the linear dependence of
log(T/Tp) on z, attributed by Leiber, Marchesoni, and
Risken' to the mean-field theory of Ref. 12 (see also
Tsironis' ).

In the region of az«1 our Eq. (5) leads to a Fokker-
Planck equation indistinguishable from that used by
Masoliver, West, and Lindenberg to obtain

T = (rr/a J2) exp[Vp/Dp+ —,
' az), (8)

The linearization assumption intrinsic to the first-
passage-time procedure makes the disagreement among
the different groups at the order of z2 and larger disap-
pear (Ref. 2) and gets the same result. A careful discus-
sion of the whole matter can be found in a recent paper
by Fox, '9 who shows that a formula originally presented
by Hanggi, Marchesoni, and Grigolini2p is correct. Fur-
ther support to the analytical argument of Fox is given

by the numerical solution of Eq. (5) within the same
idealized experiment described above (see Fig. 3).

The mean-field theory, although it predicts a linear
dependence of log(T/Tp) on z/Dp, does not provide the
correct slope' and does not interrupt this as an effect of
the transition to a new regime at z= 1/a, thereby provid-
ing the suggestion' that this behavior also holds in the
short-z re ion.

The z' dependence of our long-z formula must not
be confused with that recently found by Doering, Hagan,
and Levermore ', in the short-z regime. Qn the other
hand, it seems that the short-z behavior discovered by
Doering, Hagan, and Levermore2' does not conflict with

our remarks regarding this regime, since it depends on
the boundary conditions different from those implicitly
involved in our idealized experiment.
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