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Upper Bound on the Higgs-Boson Mass in the Standard Model
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The electroweak model with one Higgs doublet is investigated when the mass of the Higgs particle is
larger than the weak-interaction scale. It is shown that the SU(2) Higgs sector with spontaneously bro-
ken O(4) symmetry and perturbative gauge coupling becomes a trivial field theory at infinite cutoff.
Around the trivial Gaussian fixed point, for finite cutoff, a low-energy effective theory is found with non-
trivial couplings and mass generation from spontaneous symmetry breaking. We find an upper bound of
MH = 640 GeV on the mass of the Higgs particle with a lattice momentum cutoff 2z times larger than
the Higgs-boson mass.

PACS numbers: 14.80.6t, 11.15.Ha

In the standard electroweak model with SU(2) L

xU(1) symmetry the Higgs sector is described by a
complex scalar doublet @ with quartic self-interaction.
The Euclidean action is given by

S=„d x[ —,
' (|)„+—,

' igr W„)@t(8„——,'igz W„)@

+ I (@ @)~+Sgauge+Sfermion~

where Sg,„g, designates the gauge part of the action with
an SU(2)-triplet vector field W„; r stands for the three
isospin Pauli matrices, and g is the gauge coupling con-
stant (g =0.4). The gauge coupling is expected to gen-
erate small corrections to the dynamics of the Higgs sec-
tor. The fermion masses are generated by St„;,„
through Yukawa couplings. We will assume here that
the Yukawa couplings are small and play no role in the
dynamics of the Higgs field (light fermions). The O(4)-
symmetric Higgs potential has the form

(2)

where m is a mass parameter and X designates the
quartic coupling constant.

Consider the Lagrangean for the Higgs sector before
the gauge coupling is turned on. Shifting the origin of
the field @ in the spontaneously broken phase by the vac-
uum expectation value v we find that Eq. (1) describes
three massless Goldstone bosons (w+, w, z ) and one
neutral Higgs particle h with the tree-level mass
MH= 42m. The Fermi coupling constant GF and the
Higgs-boson mass MH, in tree approximation, are relat-
ed to v and k by 1/v =t2GF and X=GFMH/442, re-
spectively. The vacuum expectation value v =250 GeV
is determined by the Fermi coupling constant and k de-
pends explicitly on the Higgs-boson mass.

When the gauge coupling is turned on, the Goldstone
bosons will acquire gauge-dependent masses through
mixing with the longitudinal W bosons. In t Hooft-
Feynman gauge where the masses of ~ —and z become
M~ and Mz, respectively, the following high-energy
theorem' holds: The scattering amplitude T(WL+, Wt. ,

ZL, H) for longitudinal vector bosons and physical Higgs
particles, at center of mass energies Js much larger than

Ma and Mz, is identical [apart form 0(M~/Js )
correctionsj to the equivalent scattering amplitude
T(w+;w, z, h) of the O(4)-symmetric Higgs model at
zero gauge coupling.

Unitarity constraint on the partial-wave scatterin
amplitudes leads to the upper bound MH/v ~ (16sr/3) '

in tree-level approximation with the numerical value

MH & 1.02 TeV. The tree-level relation X =MH2/8v 2 im-

plies a perturbative unitarity bound X~2sr/3 for the
coupling constant. At the MH 1 TeV saturation point
k =2m/3 is rather strong coupling and perturbation
theory is expected to break down. It has been also sug-
gested that Higgs-boson contributions to radiative
corrections for MH larger than the weak-interaction

scale I/QGF may lead to the breakdown of the perturba-
tive expansion for weak interactions.

In the language of modern quantum field theory and
critical phenomena it is believed that the complex Higgs
doublet of the SU(2) sector in the standard electroweak
model is defined on a trivial Gaussian fixed point in the
continuum limit. The renormalized coupling kit has to
vanish in the infinite cutoff limit and the allowed range
of Xtt at finite and large cutoff has to be determined in

the low-energy effective theory with correct renormaliza-
tion and scaling properties. The limited range of Kit im-

plies an upper bound on the mass of the Higgs particle.
The purpose of our work is to investigate this problem in

a nonperturbative fashion.
Supercomputer analysis of the effective lattice

action For a realisti. c—estimate of an upper bound on
the Higgs mass we will study the O(4) limit of the lattice
SU(2) Higgs model with the Euclidean lattice action

S= —'g; g„-(+; „-
—+;) —m e; +X+;e;, (3)

where m and k are bare parameters and the field vari-
ables @; are O(4) vectors on lattice sites labeled by i
The unit vector p points along the four positive lattice
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directions (the lattice spacing is set to unity in our calcu-
lations).

Consider the phase diagram of the O(4)-symmetric
Euclidean lattice action of Eq. (3) in the bare parameter
space of X and m. The critical line where the inverse
Higgs-boson mass diverges in lattice spacing units will

separate the spontaneously broken Higgs phase from the
symmetric phase. The trivial Gaussian fixed point im-

plies lp 0 as we approach the critical line for any
fixed bare X.

For any reasonable definition of the renormalized cou-

pling, the relation M$/v =SR+0(kg) holds in pertur-
bation theory. In leading order of the gauge coupling g
the relation M~ gv/2 between the renormalized vector
boson mass and the renormalized Higgs-field expectation
value holds so that MH/M~ is expected to vanish on the
critical line (continuum limit) which is the dynamical
origin of the triviality upper bound on the Higgs-boson
mass. We will use a nonperturbative technique to study
the effective lattice action for the verification of the con-
jectured triviality scenario and the related upper bound.

The effective action when restricted to constant classi-
cal field configurations is identical to the effective poten-
tial Un(4, ) defined by4 6

e "'""'= D[e]S C —n 'g e; e s™(4)

where 0 designates the finite lattice volume (it is equal
to the number of lattice sites in our units) and the in-

tegration is over the field variables @;. The effective po-
tential Un(@, ) is nonconvex in the broken-symmetry
phase and has a direct physical interpretation: The
probability density P(e, ) to find the system in a state
of "magnetization" @, is given by P (@,) =const
xexp[ —QUn(4, )], in close analogy with statistical
physics. With this unique feature we can develop a
direct and visual physical picture of spontaneous symme-
try breaking.

The critical line in the bare parameter space is ob-
served at the crossover points of the effective potential
from convex to nonconvex shape. Although there is no
conventional order parameter for spontaneous breaking
of the continuous O(4) symmetry in a finite volume, with
the effective potential a clean signal is provided for the
transition. The O(3) symmetry of the nonconvex
effective potential in the broken phase accounts for the
three Goldstone particles associated with the symmetry
breaking.

We first determined the critical points on the phase
transition line for several values of the bare coupling
constant as a function of the bare mass m . Results for
A. =10, which is strong bare coupling with our normaliza-
tion of the quartic interaction, are reported here. %e
calculated the effective potential at seven different values
of m within a narrow range on both sides of the critical
point. At A. =10 the critical point on the second-order

phase transition line was found at m, =27.10(5).
In unconstrained runs using the hybrid Monte Carlo

algorithm we also studied the two-point function which

is a sum of a longitudinal and transverse part,

[G '],/=n, np(GL);, '+(b, ~
—n, np)(GT);J ', (s)
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FIG. 1. The longitudinal part of the inverse momentum-
space lattice propagator is plotted against the longitudinal part
of the inverse free momentum-space propagator (massless) on

the finite lattice for m =28.0 in the O(4) model; 1/Z~ is the
slope of the curve and MH is obtained from the intercept. The
errors on MH and Z~ are determined from the linear fit of a
typical Hybrid Monte Carlo run with 2X10 momentum re-
freshes and ten microcanonical steps between refreshes. Errors
from averages of several runs are given in Figs. 2, 3, and 4.

where i,j label the lattice sites whose correlation is mea-
sured and n, is the four-component unit vector along the
"magnetization" M' = (I/O )g; @ . The two-point func-
tion GL, '(p) in momentum space was measured at every
value of m for an independent determination of the re-
normalized mass MH and the field renormalization con-
stant Z~.

The longitudinal two-point function G1, (p) was fitted
against the inverse of the free and massless longitudinal
propagator given by GoL'(p) =4+„sin (p„/2) on the
finite lattice with discrete momentum components p„ap-
propriate for helical boundary conditions. The plot in

Fig. 1 shows a linear dependence on GoL (p) indicating
small contributions to the spectral function of the propa-
gator from higher-mass intermediate states besides the
dominant pole term. The slope of the fit determines Z4,
and the intercept at zero momentum corresponds to
M$/Z4, .

The infrared behavior of the two-point function and
the effective potential in finite volume, together with a
detailed account of our work, will be discussed else-
where. Here we can only briefly outline how the in-
frared problem is handled in the calculation.

The longitudinal two-point function in the infinite
volume limit has a branch cut starting at zero momen-
tum in the broken-symmetry phase as a result of the
presence of Goldstone modes. The massive Higgs parti-
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FIG. 2. The renormalized mass MH and the field renormal-
ization constant Ze are plotted against r 1 m2/—rn,2 The.

solid line indicates the logarithmically corrected scaling law for
MH-(l rl )' lin l rl l

'/. The dashed line for Z& is only
drawn to guide the eye and has no other significance.

cle appears as a complex pole in the complex momentum
square plane. The real part of the pole defines the mass
of the Higgs particle and the decay width into Goldstone
particles is given by the imaginary part of the pole. Even
for a 600-GeV Higgs-boson mass the width is expected
to be less than 20% of the mass and a narrow peak in the
propagator spectral function should be a very good ap-
proximation

To avoid the infrared branch point at zero momentum
in the propagator, the wave-function and mass renormal-
ization are carried out first at some nonzero Euclidean
point p =ti . The inverse propagator will deviate from
an approximate straight line only at very low momenta
p2«p which are avoided in our finite lattice simula-
tion. The intercept of the straight-line inverse propaga-
tor gives the mass defined at the Euclidean renormaliza-
tion point and it differs from the physical mass by a cal-

(leg I)=(—r)' lln( —r) I

"+

I
r I

(/2
I ln I r I I

—(n+2)/2(n+8) (6)

The logarithmic scaling corrections of Eq. (6) are con-
sistent with the data points as illustrated in Fig. 4 for the
renormalized field vacuum expectation value. The trivial
Gaussian fixed point at k/i =0 is also demonstrated in

Fig. 4. For strong bare coupling, renormalization effects
make Xtt small and logarithmically decreasing as we ap-

culable small amount. We estimate that the procedure
leaves only a few percent undetermined correction in the
mass of the Higgs particle which is comparable, or
smaller than the error from the zero-width approxima-
tion. The infrared regularization for the effective poten-
tial works very similarly to the method we just outlined
for the longitudinal propagator.

From the analysis of the longitudinal part of the
momentum-space propagator and from the effective po-
tential we determined the renormalized mass MH and
the field renormalization constant Ze, in the symmetric
and broken phases, the vacuum expectation value of the
renormalized field operator in the broken-symmetry
phase, and the renormalized coupling constant kR in the
symmetric phase. The renormalized mass MH and the
field renormalization constant Ze, are plotted against
r=1 —m2/m, in Fig. 2; the vacuum expectation value

(l@tt I) and the ratio MH/( l@tt I) are shown in Fig. 3
against the r variable.

The triviality bound. —With the assumption of a
Gaussian fixed point at XR =0, the logarithmic correc-
tions to mean-field critical behavior at the higher critical
dimension d =4 can be calculated in perturbation theory
for the O(n) lattice model,
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FIG. 3. The dashed line is the logarithmically corrected
scaling law of the vacuum expected value ( l
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Both sides of the figure represent the broken-symmetry
phase.
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FIG. 4. Logarithmic plot to test the leading scaling correc-
tion for the renormalized field vacuum expectation value as
given by Eq. (6) (the theoretical value of the slope is —,

' ). The
same test is also shown for the renormalized coupling constant
X& in the symmetric phase with a slope of —1 from Eq. (6).
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proach the critical line from the unbroken phase.
Inside the scaling region we have a reasonable

effective theory with nonvanishing renormalized coupling
The ratio MH/( i+p i) in Fig. 3 cannot grow very

large before scaling will break down. Since explicit
cutoff dependence begins to show in physical observables
outside the scaling region, a bound exists on the ratio of
the renormalized Higgs-boson mass and the renormal-
ized vacuum expectation value of the Higgs field at fixed
bare coupling.

At r —0.02 which corresponds to a Higgs correla-
tion length MH

' 2 we find MH/U 2.6. At a correla-
tion length of 5 we estimate from our fit that the bound
would change to 2.2. With the value MH/v =2.2 we find
the upper bound MH =550 GeV on the mass of the
Higgs particle. If scaling can be extended without notic-
able cutoff artifacts to MH ' =2 then the upper bound on
the Higgs-boson mass would

chancre
to MH =640 GeV,

a logarithmically slow change ln' 2(r1/r2) between two
points. We do not expect the bound on the ratio MH/v
to change significantly in the X ~ limit.

After we completed our work'o we received a preprint
where a Monte Carlo calculation of the triviality bound
on the Higgs-boson mass was reported with some results
similar to ours. " We should note that an upper bound
on the mass of the Higgs particle was reported earlier in
the O(4) approximation using approximate renor-
malization-group equations in momentum space. ' We
felt, however, that it was necessary to study the model
beyond approximate analytic techniques. Some results
on the upper bound were also reported in the full SU(2)
Higgs model with an inverse Higgs-boson mass less than
one lattice unit and therefore outside the range of the
effective scaling theory. ' ' Recently, a report was
called to our attention with the determination of the
effective potential from histograms of field distribu-
tions. ' Our numerical results disagree with Ref. 15.
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