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Space-Time and Topological Orbifolds
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I consider string propagation in a certain complexified version of space-time, in an attempt to gain
some intuition about a possible unbroken phase of string theory. Topological cr models (related to Floer
and Gromov theory) correspond from this point of view to the consideration of only strings with a self-
dual pattern of momenta and windings. I also observe an amusing generalization of the high-energy sad-
dle point studied by Gross and Mende; this generalization involves complex space-time and separate
Riemann surface moduli for left-moving and right-moving modes.
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One of the surprising discoveries of recent years is that
Yang-Mills instantons play an important role in our un-

derstanding of geometry in four dimensions. ' A closely
related development involves the role of cr-model instan-

tons in the understanding of symplectic geometry. 2'3 It
has been proposed that quantum field theory (and not

just classical instanton theory) is the correct framework

for the understanding of these developments. Indeed, re-

normalizable quantum field theories relevant to the

Donaldson, Floer, and Gromov theories can be construct-
ed. In recent works several authors have derived these
theories from underlying gauge-invariant actions. 6 For
my purposes here I will simply work at the Becchi-
Rouet-Stora- Tyutin (BRST) gauge-fixed level.

The topological quantum field theories related to
Donaldson, Floer, and Gromov theory are not completely
unfamiliar. Especially in their gauge-fixed versions, they
are closely related to physical constructions. Four is the

physical dimension at least macroscopically, and gauge
theories, coupled to matter, are the most important

quantum field theories in four dimensions, at least at ex-

perimentally accessible energies. (In fact, they may well

be the only well-defined quantum field theories in four

dimensions. ) Two-dimensional nonlinear cr models also

appear to be rather "physical, "
in the context of string

theory. The most important difference between topologi-
cal quantum field theories and usual ones is that in the

topological theories, the ordinary local excitations are
unphysical (or can be gauged away) in the BRST sense.

For instance, in topological tr models the graviton vertex

operator is a BRST commutator. For this reason, it

seems likely that if the topological theories have any-

thing to do with physics, they are related not to the usual

phases of physical theories but to a phase in which gen-

eral covariance and the higher symmetries of string

theory are unbroken. The purpose of this paper is to
make this idea somewhat more tangible. We will not get
very far, but I hope that the discussion will be provoca-
tive.

First of all, in topological o models one must believe

that the space-time manifold M is complex (or at least

almost complex). This may seem a little bit discourag-
ing at first, but let us proceed anyway. There is some
(flimsy) independent evidence' that a complexification
of space-time is part of what is going on in string theory
at a more fundamental level. So we will suppose that the
space-time coordinates are d complex variables X', i

1, . . . , d (the complex conjugates will be denoted X').
There is no restriction on d, sinces"'2 there is no criti-
cal dimension in topological cr models (the Virasoro
anomaly is zero for every matter multiplet and likewise
for the gravitational multiplet with its ghosts). The
metric will be taken to be flat, gi =gi =0, gt-

diag( —++ +). I introduce spin-zero fermions
y', y' of ghost number one, and fermions g+,X'- of ghost
number minus one and of spin 1 and —1, respectively.
The world-sheet coordinates are denoted as z and z, re-
spectively. The Lagrangean is

J dzdz(g;; ei,X't);X'+ig;;Z'+ B,-y'+ig;;Z' ti, y').

This possesses the fermionic symmetry

bX t0'y, bX ley,

by' By' =0,

BZ+ —e 8,X',

(2)

(It is actually possible to take separate fermionic param-
eters for the left- and right-moving modes, but this de-

pends on having a Kahler structure on M, which is a
feature that I do not wish to exploit. ) I will denote the
operator that generates the transformation (2) as Q.

The characteristic feature of (2) is that each field has
a Q partner. Related to this, the Hamiltonian is a Q
commutator. As a result, the physical states are precise-

ly the ground states. These are tied to the global topolo-

gy of M. Because M is taken to be contractible, the only

physical state is the SL(2)-invariant "vacuum, " with

vertex operator V=1. This might appear unpromising
for physical applications. In addition, we must discuss
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I stress that k' is real so that only the imaginary part of
X' is being shifted. As we will see, the k' play roughly
the role of momentum vectors. The normalization factor
2n is for convenience. We now consider string propaga-
tion on M' M/G. Of course, as a space M' is simply
ordinary real Minkowski space. But in string propaga-
tion on a quotient M/G, one must introduce the 'twisted
sectors, " which in the present context are sectors in

which the boundary conditions on X' are

X'(o+ n) =X'(o ) + 2' k', (4)

for arbitrary k . It is still true that, the Hamiltonian be-

ing a Q commutator, only the ground state in any sector
of given k' is physical. Let us denote these states as

i
k'), and the corresponding vertex operators as Vl, i. Let

us study the correlation functions of the Vk.
In general, in topological o models, correlation func-

tions are computed by finding suitable instanton solu-
tions. The reason for this is roughly that, according to
(1), the instanton action is positive semidefinite and van-

ishes if and only if the instanton equation

8X'/as =0

is obeyed. More fundamentally (as in certain problems
in quantum field theories with space-time supersym-
metry'3' ) the fermionic symmetry of (1) can be used
to prove that the correlation functions of the BRST-
invariant operators are given exactly by a lowest-order
instanton calculation.

Let us pick n points zl, . . . ,z„on the complex plane,
and n shift vectors k&1 ', . . . , ki„), and study the correla-
tion function

(Vl, „,(z 1) Vk,„,(z. )).

What sort of instanton is relevant'? Since Vi„, creates a
shift of X by an amount k&,1, there must be a cut
emanating from each z, . Across the rth cut, X jumps by
2xik&, &. Clearly, the holomorphic function with these
properties is

X,'i», = g kl, ) ln(z —z„). (7)

In trying to interpret this instanton physically, there
are a few diSculties. First of all, according to (1), the
instanton action is zero. Equation (1) is written in a way
that makes it obvious that the bosonic part of the action

the interpretation of the imaginary part of the space-
time coordinates X'. Perhaps the positions of particles
are "really" complex, but the imaginary parts are small
in low-energy experiments. The approach in this paper
will be, in a sense, to suppress the imaginary parts of the
X', or at least the zero modes thereof, by the construc-
tion of a suitable orbifold. Let G be the group of imagi-
nary shifts of the X':

X' X'+ 2nik'

vanishes for instantons. To compare to conventional a
models, note that the bosonic part of (1) can be rewrit-
ten as

The first term is a conventional o-model action, but the
second term is the usual 8 term of the nonlinear a model
at an imaginary value of 8 which is just such that the in-

stanton action is zero. This value is the most natural one
for topological cr models. Another peculiarity of the
present setting compared to usual string theory is that in

(6) there is no rationale for integration over the z, .
Perhaps coupling to topological gravity would change
this, but this point will not be explored here. Finally,
and related to these facts, in (6) there does not seem to
be a mass-shell condition on the k„. Quantization of (1)
on M/G gives a physical ground state for every value of
k„. Perhaps one should interpret the mass-shell condi-
tion as a property of the broken, low-energy phase of
string theory; alternatively, perhaps a mass-shell condi-
tion should be obtained by coupling to two-dimensional
gravity or shifting 8. It seems pointless to try to "solve"
any of these problems at the moment, since the correct
assumptions are unclear. Instead I will now try to point
out a few additional ingredients of the puzzle.

Gross and Mende'5 calculated the scattering of strings
at large angles and very high center-of-mass energies. In
many physical theories, such high-energy scattering in

the ordinary vacuum is related to properties of a possible
high-energy phase —though the nature of the relation
varies very much from theory to theory. One of their
main conclusions was that high-energy scattering is
governed by a particular classical solution (of the world-
sheet theory). For scattering of particles of momentum
vectors pt, i, the relevant classical orbit at tree level is

XG~ =—gp'(, 1 [in(z —z„)+ ln(z —z, )].

Clearly, there is a very simple relation between (9) and
(7), namely,

+GM & Re+class.

Thus, the complex instanton X,'1,» which enters in the
study of correlation functions on M'=M/G is closely re-
lated to the classical solution that is relevant in high-

energy scattering in the ordinary phase of strings. How-
ever, (10) cannot be taken too seriously at the present
time. The differences between the left- and right-hand
sides are numerous; in Ref. 15, the instanton action is
nonzero, there is a rationale for extremizing with respect
to the z„etc. Indeed, XGM has a well-de6ned relation to
a physical calculation, while the introduction of topologi-
cal orbifolds and the holomorphic instanton X,i„, is just
guesswork.

Nevertheless, it is amusing that the imaginary part of
X,i,» enters in the study of the high-energy behavior of
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scattering amplitudes, and it is interesting to ask whether
the real part of X,l„, can similarly appear in a plausible
calculation of the ordinary, broken phase of string
theory. It is easy to think of such a calculation. In prin-

ciple, there are two ways to obtain a string of very high
energy. One can take a string of ordinary microscopic
size and accelerate it to very high Lorentz factor; or one
can stretch a string to be of cosmic dimensions, obtaining
a string which has very high energy because it is very
large. Such macroscopic fundamental strings were con-
sidered as astronomical objects in another paper ';
scattering of such macroscopic strings was studied by
Polchinski. '

Although this is not the usual situation considered for
realistic cosmic strings in astronomy, the simplest con-
ceptual framework for thinking about macroscopic fun-

damental strings is to assume toroidal compactification
of spatial dimensions with the cosmic strings as winding

states; indeed, this framework was used in Ref. 17.
Thus, we consider strings with boundary conditions

X'(o+ n) -X'(a) +2za',

where the a' are certain shift vectors which are assumed
to be of astronomical size. The 2n is for convenience.
At this point, if the cosmic string is going to be put on
mass shell, one must worry about the time component of
the momentum or winding of the string. It is rather un-

physical (except in discussion of thermodynamics) to
compactify the time direction, and so windings in the
time direction are normally impossible and a cosmic
string would usually have a very large time component of
the center-of-mass momentum. Nevertheless, for con-
ceptual purposes I would like to temporarily imagine

Xt« —g [(p|,&
+al„l )ln(z —z, ) + (pl, &

—a|,l ) ln (i—z„

One way to derive this formula is to note that the vertex
operator of a string with momentum p and winding a is

W~,, exp[ —,
' [(p+a) XL+(p —a) XR]].

The scattering process would be given by (+WR, ), and
to find the expectation value of X(z) in such a process
one computes (X(z) Q„W~, ), which is equal to (1S)
times (+Wz. ..).

At this stage, a somewhat clearer interpretation of (7)
can be given. It corresponds to scattering of a system of
strings which has a self-dual system of windings and mo-

menta, p~, ~ =a~f).
This gives a somewhat different perspective on the pos-

sible physical meaning of topological o models. The
Lagrangean (1) for strings propagating on M' corre-
sponds to strings with purely self-dual windings and mo-
menta. A parity inversion of (1) would give a reversed
Lagrangean that would lead to anti-self-dual windings
and momenta. For physical strings which obey neither a
self-duality condition nor an anti-self-duality condition,

scattering of macroscopic strings with windings only and
no momenta (and thus, to be on mass shell such strings
must have windings in the time direction as well as the
spatial directions). Let us consider the scattering of n

incident and outgoing cosmic strings with shift vectors
al, &, r I, . . . , n. I assume that the corresponding ver-
tex operators W„are inserted at points z, on the complex
plane. Clearly, the W, create cuts in the string coordi-
nates X' with discontinuities 2na'. If the a' are very
large, the world-sheet action

(12)

and this is related to our friend X,l„, by

Xcosmic lmXclass (i4)

Thus, in a sense, the imaginary part of X,l„, also has a
reasonable rationale in the ordinary phase of string
theory. However, there are again many differences in in-

terpretation between (13) and (7). Most notably, in

(13) the action (12) is nonzero and very large, and one
would want to choose the z„ to minimize it.

In the ordinary phase of string theory, the scattering
of a system of strings whose energies are very large in

part because of windings and in part because of momen-
ta would be described by a classical solution which is
simply the sum of (9) and (13), namely,

(1S)

(1) must be combined with its inverse in a suitable way,
which remains to be discovered. Of course, the conven-
tional phase of string theory is one very natural system
with both left- and right-moving modes, but there may
be some sensible combination of (1) and its parity rever-
sal which is closer to a possible unbroken phase and to
the crucial geometrical ideas that string theory is based
on.

From this point of view, the fact that the BRST-
invariant "physics" extracted from topological o models
is purely topological in character would mean that the
purely left-moving modes of a string depend only on the
topology and are independent of the detailed back-
ground, and likewise for the purely right-moving modes.
The background dependence would arise in the choice of
a way of combining the left- and right-moving modes.
Such a suggestion has been made by Peskin in trying to
understand background independence in string field
theory. '

is very large for any field with these discontinuities, and
the cosmic string scattering will be dominated by a clas-
sical solution obeying the boundary conditions. Obvious-

ly, this classical solution is none other than

X„, ;,-—'gal, & [ln(z —z, ) —ln(z —i„)],
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Finally, it is amusing to reconsider the saddle-point calculation of Ref. 15 in the context of the classical solution (15)
that incorporates both momenta and windings. One readily sees that the action of (15) is

I(z„z,) = —
2 g (p(, & p(, )+a(,) a(,))[ln(z„—z, )+ln(i„—z, )]

r&s
—

—,
' g (p(„) ab&+at, ) p(, ))[ln(z, —z, ) —ln(i, —i, )l. (16)

r&s
1[In computing this, one must include the source term
ig,p(„) X(z„) associated with the momenta; otherwise
the p(, ) p(, &

term will come out with the wrong sign. ]
Now, if the a(,) are all zero, then (15) reduces to the
saddle point (9) studied by Gross and Mende. A pecu-
liar fact which has not been fully elucidated is that the
saddle point is purely imaginary. (It has been suggest-
ed'5'9 that a factor of i can be rotated away by a Wick
rotation of world-sheet time, leading to an interpretation
of XGM as an orbit in rea/ Minkowski space. ) Even
without understanding the significance, if any, of that
fact, it is clear that imaginary X means that the action I
is real. Likewise, if the p(, ) are all zero, then (15)
reduces to the real cosmic orbit (13), and for such a real
orbit the action is real. But if the a(„) and p(„) are all
nonzero, then I is in general complex. This has a
dramatic consequence for the saddle-point problem. The
saddle-point equations are

If I is real, then the second equation is a consequence of
the first provided

(18)

(that is, z„ is the complex conjugate of z„), which indeed

is usually taken as the definition of i, in string theory.
But if I is complex, then (17) and (18) would be an over-

determined system; to obey both equations in (17), one

must abandon (18) and treat z, and z„as independent
complex variables. Thus a physical process involving the
scattering of very-high-energy strings, some of them with

high energies because they have been accelerated to high

energies and some of them with high energies because
they are big, would be governed by a saddle point (gen-
eralizing that of Ref. 15) in which z, and i, would have

completely independent complex values. [This does not

depend on taking the "big" strings to be winding modes.
One likewise is led to complex X' and the need to aban-
don (18) if one tries to give a saddle-point description of
the scattering of strings that are high up on the leading

Regge trajectory, and thus "big."] Abandoning (18)
means more or less that the Riemann surface moduli

seen by the left-moving modes are independent of the
moduli seen by the right-moving modes. Perhaps that is

an appropriate state of affairs if at some level space-time
is complex and the left- and right-moving contributions
to the center of mass of a string are more nearly in-

dependent than they are in the usual low-energy phase of

string theory.
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