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We formulate information-theoretic Bell inequalities, which apply to any pair of widely separated
physical systems. If local realism holds, the two systems must carry information consistent with the in-

equalities. Two spin-s particles in a state of zero total spin violate these information Bell inequalities.
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Local realism is a world view which holds that physi-
cal systems have local objective properties, independent
of observation. It implies constraints on the statistics of
two widely separated systems. These constraints, known
as Bell inequalities, '2 can be violated by quantum me-
chanics. The Clauser-Horne-Shimony-Holt (CHSH)
Bell inequality applies to a pair of two-state systems and
constrains the value of a linear combination of four
correlation functions between the two systems. Quan-
tum mechanics violates the CHSH inequality; the viola-
tion has been confirmed experimentally.

In this Letter we formulate information-theoretic Bell
inequalities. These information Bell inequalities apply to
any pair of widely separated systems —not just two-state
systems. They are written in terms of the mean informa-
tion obtained in several measurements on the two sys-
tems. Our information Bell inequalities have an appeal-
ing interpretation: If local realism holds, the two sys-
tems must carry information consistent with the inequal-
ities. The quantum statistics of a pair of spin-s systems
in a state of zero total spin violate these information Bell
inequalities for arbitrary values of s.

We begin by reviewing pertinent elements of informa-
tion theory. Consider two measurable quantities (ob-
servables) A and 8, and label the (discrete) possible
values of A and 8 by a and b. (Throughout we denote
an observable by a capital letter and label its possible
values by the corresponding lower-case letter. ) On the
basis of one's knowledge about A and 8, one assigns a
joint probability p(a, b) for values a and b Bayes's.
theorem,

p(a, b) =p(a I b)p(» =p(b
I a)p(a),

relates the joint probability to conditional probabilities.
The information obtained when one discovers values a

and b for A and 8 is I(a,b)—: logp(a, b). The b—ase of
the logarithm determines the units of the information
(base 2 for bits, base e for nats). In the same way
I(b)—:—logp(b) is the information obtained when one
discovers value b for 8, and 1(a I b)—:—logp(a I

b) is the

further information obtained when one discovers value a
for A, if one already knows the value b of 8. Written in

terms of information, Bayes's theorem becomes I(a,b)
=1(a

I b)+1(b) =1(b
I a)+1(a).

Consider now the mean information obtained when

one finds values for A and 8,

H(A, B)=g, b p(a, b)1(a,b)

This mean information is the entropy of the probability

p(a, b); it can be thought of as the total information car-
ried by A and 8, defined relative to the knowledge about
A and 8 incorporated in p(a, b). In the same way
H(8) =Pp p(b)I(b) is the information carried by 8, and

H(A I b) =g, p(a I b)1(a I b) is the information carried
by A, given the value b of B. Averaging H(A I b) over 8
gives the conditional information carried by A,

H(A
I » =Zb p(b»(A I b)

=g. b p(a, b)1(a I b)

An immediate consequence of Bayes's theorem is the re-
lation

«A, » =H(A
I »+H(» =«8 I»+H(» (»

We require one more ingredient, the mutual informa-
tion

I(a;b) =l(a) 1(a I b) =—l(b) —l(b I a) =l(—b;a),

which can be either positive or negative, but whose

mean,

H (A;8) =gp (a, b) I(a;b)

=gp(b) gp(a I b)log ~ O, (4)p(a b)
b a p(a)

is nonnegative. The mean mutual information,

H(A 8) =H(A) —H(A I 8)
=H(B) H(8 I A) =H(B;A), —
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is the information carried in common by A and B.
We need from information theory two inequalities:

run of the experiment, all four have definite values, in-

dependent of observation. These values are unknown,
and only two values —one from each system —are deter-
mined in each run. Nonetheless, what is known is de-
scribed by a joint probability p(a, b', a', b), from which
follow a pair probability for each measurable pair of
quantities —e.g., p(a, b) =P, b p(a, b', a', b). Since the
two systems are widely separated, a measurement on one
should not disturb the other. This no-disturbance as-
sumption, based on locality, means that the statistics of
runs that measure a particular pair of quantities are
given by the appropriate pair probability. More precise-
ly, for runs that measure A and 8, the probability of a is
p(a) =pbp(a, b), and the probability of b, given a, is
p(b I a) p(a, b)/p(a). How would a disturbance mani-
fest itself. The conditional statistics of 8, given a, would
not be those predicted by p(b Ia). Objectivity and lo-
cality —a combination called local realism —are used to
establish the existence and relevance of the joint proba-
bility p(a, b', a', b).

An obvious generalization of the right-hand equality
(6) yields

8)+H(A'
I 8)+H(8), (7)

H(A I 8) ~ H(A) ~ H(A, B)
The left-hand inequality means that removing a condi-
tion never decreases the information carried by a quanti-
ty. The right-hand inequality means that two quantities
never carry less information than either quantity carries
separately.

We now turn to the simplest information Bell inequali-
ty. Consider two widely separated systems, A and 9,
and four measurable quantities —A and A' associated
with A, and 8 and 8' associated with 9—whose values
are denoted by a, a', b, and O'. In a quantum-
mechanical description the two observables associated
with each system would not commute and hence could
not be determined simultaneously. Thus we have in
mind a series of experimental runs, in each of which one
measures only two quantities, one from each system (as
in a test4 of the CHSH inequality' ).

Suppose the four quantities are objective, i.e., in each

H(A, B)~ H(A, B',A', 8) =H(A
I
8',A', 8)+H(8'I A

where Eq. (3) is used to expand the right-hand side. A
slight generalization of the left-hand inequality (6) can
be used to eliminate conditions —i.e., K(A IB',A', 8)
~H(A IB') and H(8'IA', 8) ~H(8'IA'). Subtract-
ing H(8) from both sides of Eq. (7) leaves the informa-
tion Bell inequality

propagating spin-s particles, A and 9, having spins S~
and Sp (in units of 6), are emitted by the decay of a
zero-angular-momentum particle and thus have zero to-
tal spin. Each particle is sent through a Stern-Gerlach
apparatus, which measures a component of the particle's
spin along one of two possible directions. For particle A
the two observables are A =S~ a and A'=S~ a', where
unit vectors a and a' specify orientations of the Stern-
Gerlach apparatus. The»+ I possible values of A and
A', labeled above by a and a', are denoted here by quan-
tum number m —s, —s+ 1, . . . , s —l,s. Eigenstates
of spin component S~ e, where e is a unit vector, are
written as Ism)~, . Similar notation applies to particle
9, with the two spin components specified by unit vec-
tors b and b'.

The quantum statistics are derived from the state of
zero total spin

H(A I 8) ~ H(A I
8')+H(8'I A')+H(A'I 8), (8)

which involves pair probabilities that are defined in

quantum mechanics and that can be determined from
the statistics of the four types of experimental runs. The
Bell inequality (8) applies to any four quantities whose
statistics can be derived from a joint probability. Its
content lies in Eq. (7): Four objective quantities cannot
carry less information than any two of them.

To show that quantum statistics violate inequality (8),
consider the spin-s generalization6 of Bohm's version of

!
the Einstein-Podolsky-Rosen paradox. s Two counter-

I y) -(»+ I ) '" g ( —1)' !sm&~, e I s —m)g „
m —s

where the quantization axis e is arbitrary. Quantum mechanics predicts the probability

p(a=mi, &=m2) =
I ~,,hami I sb(&m2I I y&I'=(»+1) 'ID, —,(R.(») I' (10)

that S~ a has value m ~ and Sg. b has value m2. This probability depends only on the angle 8 between a and b. In the
rightmost forms of Eq. (10),

D, ,(R,(e))=~,(sm i I e
'

I sm 2&~,

is the matrix for a rotation R, (8) by angle 8 about any unit vector n orthogonal to any quantization axis e. For
A-S~ a and B=Sg b, the quantum-mechanical information H™(AIB)=H (8 I A)=H™(8)takes the form

H ~M(8) = — g I D, ,(R,(e) ) I
'log

I D, ,(R,(8)) I
'.

ml, m2
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Consider now a special case: the vectors a, b', a', and
b are coplanar, and successive vectors in this list are
separated by angle 8/3. The information Bell inequality
(8) is violated if the information diff'erence

P (8) —=3H™(8/3)—H~ (8) (12)
becomes negative, the negative value giving the deficit
information carried by the two particles, relative to the
requirements of local realism for this geometry.

For small angles (~ 8~ &&s '), H~ (8) is proportion-
al to —82log8 . The resulting small-angle behavior of
&~M(8) violates the information Bell inequality (8) for
all values of s. The violation is a consequence of the
tight correlation between the spins: Knowing the value
of Sg b tells one so much about S~ a for a near b that
very little information is gained by determining the value
of S~ a—so little as to violate the requirements of local
realism. To demonstrate the violation, we calculate
P~ (8) for various values of s. The results, displayed
in Fig. I, indicate that the maximum information deficit
increases with increasing s, although the range of angles
over which there is a violation decreases. (For a two-
proton atomic-cascade experiment, 4 where the unit vec-
tors specify orientations of polarization analyzers, one
can use the s = —,

'
plot in Fig. I by letting the abscissa be

twice the angle between the outermost analyzers. )
The usual Bell inequalities are written in terms of

correlations between two two-state systems. The CHSH
inequality3 tested in the most recent experiments in-

.2

lA

R

lA

A
R 2

O

O

s = 25
—.5 I i I ( I ( I

0 10 20 30 %0

I ( I

50 60 70 80 90 100

THETA (DEGREES)

FIG. 1. Information diff'erence )V (8) in bits vs angle 8
in degrees for s 2, 1, 2, 5, and 25. The maximum informa-
tion deficit for s —,

'
is —0.2369 bits at 52.31', for s 25,

—0.4493 bits at 9.798 .

volves four quantities, two from each two-state system, it
constrains the value of a linear combination of the four
measurable correlation functions of these quantities, and
it follows from the assumption of a joint probability for
the four quantities. Its violation by two spin- —, particles
in a spin-singlet state reflects the tight correlation be-
tween the spins. The CHSH inequality is thus closely
analogous to the information Bell inequality (8). For the
spin orientations considered above, however, the CHSH
inequality is violated over a larger range of angles than is

inequality (8). Thus the Bell inequality (8) does not re-
veal all quantum behavior that is inconsistent with local
realism.

This realization prompts us to reconsider what it is
that Bell inequalities test. A Bell inequality —whether
for correlations or for information —is a consequence of
our assuming a joint probability for a set of measurable
quantities. When quantum mechanics violates a Bell in-

equality, it means, strictly speaking, only that the quan-
tum statistics cannot be derived from such a joint proba-
bility. A Bell inequality is transformed into a test of lo-
cal realism by the argument that objectivity and realism
ensure the existence and relevance of the joint probabili-
ty. Violation is thus interpreted as a conflict either with

objectivity or with locality. (We believe that quantum
mechanics conflicts with objectivity because there is no
nonlocal disturbance in the sense defined earlier. )

If Bell inequalities arise from a joint probability, why
not take a more direct approach? Start with marginal
probabilities predicted by quantum mechanics, and ask if
they can be derived from higher-order joint probabilities.
This approach has been advocated by Garg and Mer-
min, who formulate it mathematically and investigate it
for pairs of spins-s systems for several values of s. The
Garg-Mermin approach ferrets out all the consequences
of local realism for arbitrary systems, but it is not simple
mathematically, nor does it yield clear-cut constraints
for experimental test. The CHSH inequality is simple to
derive and has been tested, but it does not test all the
consequences of local realism, nor is it easy to generalize
nontrivially to other than two-state systems. Thus we see
a role for information Bell inequalities: They do not get
at all the consequences of local realism, but they are sim-

ple to derive and applicable to arbitrary systems; as such,
they can be a useful tool for the comparison of quantum
mechanics against the requirements of local realism.

There is a technique, which we call "chaining, " for
making more onerous the requirements of local realism.
Chained correlation Bell inequalities have been con-
sidered by Selleri and Tarozzi and by Garuccio and Sel-
leri, ' but not much discussed. Here we apply chaining
to the information Bell inequality (8).

Consider as before two widely separated systems, A
and 9, and N=2Q measurable quantities —AI, . . . , Ag
associated with A and BI, . . . , Bg associated with 8—
interleaved in a sequence A ~, Bg,A2, Bg—~, . . . , Ag —&,
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B2,Ag, B1. Objectivity and locality justify a joint probability for the N quantities. A trivial extension of the reasoning
that leads to inequality (8) establishes the chained information Bell inequality

This work was supported in part by the National Sci-
ence Foundation Grant No. PHY-8896153.
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Sg (8)—= (N 1)H —(8/(N 1)) —H— (8) (14)

is negative. For any 8, when N is sufficiently large,
H (8/(N —1)) can be approximated by the small-

angle behavior. In the limit N ~, Sg (8)
—H~M(8) (0, which violates inequality (13) for all

8 except multiples of tr. For large-N chaining, the N —1

measurements at the small angle 8/(N —1) together
yield vanishingly small information because of the tight
correlation between the spins; this vanishing of informa-
tion is closely related to the quantum Zeno paradox. "

H(A| i B1)(H(At i Bg)+H(Bg i A2)+ +H(B2i Ag)+H(Ag i Bl),
called "chained" because it can be obtained by repeated
application of the N=4 inequality (8). Local realism
becomes more burdensome as N increases because the
increasing number of objective quantities requires the
system to carry more information.

To investigate violation by quantum mechanics, return
to the two spin-s particles considered above. The N
measurable quantities, A, S~ a, and B, =Sg b, for
j= i, . . . , g, are spin components specified by unit vec-
tors al, bg, a2, . . . , b2, ag, b1. If these vectors are copla-
nar and successive vectors in the list are separated by an-

gle 8/(N 1), t—hen the chained information Bell inequal-

ity is violated when the information difference
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