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Quantum-classical correspondence in many-dimensional quantum chaos is investigated by use of a

coupled quantum kicked-rotors model. Even when the number of rotors is only two, results obtained are
drastically diff'erent from those for a single-rotor system; that is, in the semiclassical limit the coupled
system restores the essential features of classical chaos under appropriate conditions. In particular, the
time-reversal experiment reveals that the classical chaotic mixing is recovered almost entirely; however,

the recovered mixing is "conditional" in the sense that there exists a threshold for the recovery.

PACS numbers: 05.45.+b

Since the numerical experiment by Casati et a/. , it
has been recognized that quantum-classical correspon-
dence in chaotic dynamics seems to be quite anoma-
lous. The time scale for which the quantum-classical
correspondence holds is too short. It is conjectured to be
as short as T„~logt't/X (X, positive Lyapunov ex-
ponent). ' Beyond this time scale the quantum chaos
system becomes quite stable and loses the ability of mix-
ing. However, studies of quantum chaos have been so
far restricted to few-dimensional systems with at the
most three dimensions. There is a possibility that in

many-dimensional quantum chaos the quantum-classical
correspondence may be recovered far more naturally
than in a few-dimensional one. Indeed, recent studies re-
veal that the few-dimensional quantum chaos under a
continuous application of classical noise restores not only
the ergodicity'7' but also the mixing possessed by its
classical counterpart. These facts lead us to the idea
that coupled quantum chaos systems may cooperatively
recover the nature of classical chaos. In the present pa-
per we report the first study of quantum-classical
correspondence in many-dimensional quantum chaos by
use of a coupled quantum kicked-rotors model. The re-
sults obtained are quite drastic even when the number of
rotors is only two. We, therefore, confine ourselves to a
two-coupled-rotors system hereafter. Studies for more
than three coupled rotors will be reported in subsequent
papers. '

The system we consider is a coupled N-kicked-rotors
system described by the Hamiltonian

+ oo

H=T({Aj)+ g V({0,j)S(t —n), (1)

where 0; and p; = —i h a/el 0; are the position and
momentum operators and t is time. In the present paper
we assume the specific forms of the kinetic and potential
energies as T({p,j ) =g;P; /2 and

V({0;j) =gtKt cos0, +g Iej cos(0t 0g').

If the coupling constant e;~ is zero, the dynamics of a sin-
gle uncoupled rotor is described by the standard map-

ping. " In quantum dynamics a single-step evolution
(t t+1) is attained by the operation of the unitary
operator U=U|U2, where Ui({p;j)=exp[ —iT({P;j)/A]
and Up({0;j ) =exp[ i V(—{0;j )/6].

In numerical computation we used the fast-Fourier-
transformation (FFT) method to save CPU time: First,
apply the operator U2({0;j ) to the wave function of the
position representation. Next, transform the wave func-
tion into the momentum representation by the FFT, and

apply the operator Ul({p;j), which is diagonal in the
momentum representation. Finally, transfortn the wave
function again into the position representation by the
FFT. By this method the CPU time is reduced about
log(NL/NL ) (NL, number of quantum levels for a kicked
rotor) times shorter than by the ordinary method.

Let us first examine a slightly specific case to investi-

gate whether the coupled quantum chaos may restore the
nature of classical chaos. To this end we set Kt =K2
(=E) above the classical stochastization threshold Kc
-0.97. Above Kq the classical uncoupled rotor exhibits
a chaotic diffusion across the momentum space. " In
contrast to this a single quantum rotor is quite stable
and does not exhibit diffusion except for in a very initial
stage of time evolution. ' In Fig. 1(a) we show ty ical
examples of the time evolution of the moment M 'l(t)
=(yo

~ (p, —po) ~
ttto) (X, —:U 'XU'; toto, initial wave

function). As is expected from the behavior of a single
quantum rotor, ' M ' tends to saturate at a finite level
when e is small enough. As e increases, the saturation
level grows rapidly, and the transient behavior of Ml'l(t)
shows a fractional diffusion Mt'l(t)a:tp (p&1). With
further increase in e, the exponent P reaches 1 and nor-
mal diffusion appears! To make a quantitative compar-
ison with the classical result, we depict in Fig. 1(b) the e
dependence of the diffusion constant. For P & 1, the
time evolution of M ' (t) cannot be characterized by a
single diA'usion constant, and so we introduce the
moment-dependent diffusion constant D ' (M) defined

by D ' (M) = [dM t'l/dt], =,„,where t~ is determined by
M ' (tM) =M. M is varied between two values Ml
«M2 [«(AP), where AP is the size of momentum
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FIG. l. (a) Variation of the functional form of the moment
M ' (t) as p is increased. ft/2tr &",

& . (b) e dependence of
D ' (M). Here M is varied between M~ =300 and M2 =1000.
Filled circles, tt/2tr, p24 . Open circles, ti/2tr =

5,2 . Dashed
line, classical diAusion constant.

space]. For small e, D ' (M) is quite small and spreads
between D ' (M~) and D ' (M2) because of the fraction-
al diffusion. With an increase in e D ' (M) increases
and its spread decreases quickly. Finally the normal
diffusion characterized by a single diffusion constant ap-
pears, and above a certain threshold et- the diffusion con-
stant becomes in entire agreement with the classical
diffusion constant D,l. We note here that the M(')(t) for
the uncoupled rotor cannot reach even to the lower level

M2 (M2=300) for t ~. Thus it is quite apparent
that a drastic recovery of a classical diffusion occurs in

the coupled rotors. Since the momentum space is bound-

ed, the diffusive motion begins to saturate as M (') (t)
reaches = (t).P) /40 We confir. med the persistence of
diffusive motion by increasing the size of momentum
space AP up to 41X2tr. Furthermore, we computed
M ' (t) for the classical system under the same bound-

ary condition as the quantum system and compared it
with the quantum M ' (t). For e»ec the results agree
quite well even at the saturation level. In this way we

confirmed the recovery of classical behavior.
The "classicalization" threshold ep is quite small in

the semiclassical limit. Using the mixing characteristics
for a single rotor under an application of classical noise,
we can develop a simple self-consistent theory to deter-
mine et-. In the present paper we do not go into the de-
tail of the theory and only refer to the result. et- is eval-
uated as et- —(K/2D, ~T, ) ' ft. '

If the motion of one of the two rotors becomes classi-
cally chaotic, it perturbs the other rotor as if it were a
classical noise source, which makes the motion of the
other rotor classically chaotic. Hence there is a positive
feedback inducing the classical chaotic motion. Such a

100 200

FIG. 2. Time-reversal experiment. (a) Time evolution of
M(t) for various g before (t (T) and after (t ) T) the time-
reversal operation. (b) g dependence of the time irreversibility.
Classical result is indicated by the dashed line. Here
Ki =K2 =3.0, p =0.4, and tt/2tr

cooperative interaction restores the classical time-de-
pendent behavior if the coupling is strong enough.

Existence of diffusion does not necessarily mean
recovery of classical mixing. To test the presence of
mixing the time-reversal experiment is most useful9:
Evolve the system for a finite period T and apply a per-
turbation at t=T. Next evolve the system back by the
time-reversed evolution rule for T. The difference
/3M ' (T) =M ' (2T) —M ' (0) characterizes the ir-
reversibility of the system. We assume that the perturba-
tion is described by the Hamiltonian ((p~+p2)b(t —T),
which makes the positions of the rotors shift by (. A sin-
gle quantum rotor is quite stable5 and does not exhibit
irreversibility except in a very initial stage of time evolu-
tion, i.e., T& T, . ' However, as shown in Fig. 2(a), a
drastic change occurs for the coupled quantum rotors
system. If g is not too small, the time-reversed process
(t & T) loses the memory necessary to return to the ini-
tial state immediately after t = T, and the time reversibil-
ity is entirely violated. This implies a recovery of classi-
cal chaotic mixing. However, unlike the classical chaotic
mixing, there is a threshold (T for the perturbation
strength g. As shown in Fig. 2(b), below gT the irrever-
sibility AM (') (T) is dramatically reduced from the clas-
sical value. Classically interpreted, the presence of the
threshold means that the loss of memory due to the or-
bital instability occurs only when the initial distance be-
tween the two nearby orbits is more than a critical length
determined by gT. In this sense the recovery of mixing is
"conditional. " The presence of such a threshold is an
essential feature of the chaotic mixing in quantum sys-
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FIG. 3. e' dependence of Dt't(M) (circles) and Dt t(M)
(crosses) compared with classical results (dashed lines). Here
KI 3.0 and K2=0.8. M is varied from 300 to 700 for rotor 1

and from 50 to 200 for rotor 2, respectively. Here h/2tr =
|OI4 .

tems. We numerically confirmed that in the regime
where the quantum-classical correspondence is recovered

(T is proportional to ltl and the ratio gT/ltt seems to be
insensitive to e and AP.

A fundamental question is whether many-dimensional
chaos in general restores the nature of classical chaos.
In this respect, the example we discussed so far is rather
specific because in the classical limit the constituent ro-
tors are already in chaotic states before the interaction is

introduced. To answer the above question we consider
a more general case, i.e. , Kt &Kc and K2(Kq. If
e e]2 =0 the Lyapunov spectrum of the classical coun-
terpart has only one positive exponent, but as e increases
the second exponent increases monotonically and chaotic
motion becomes two dimensional. Simultaneously the
second rotor exhibits a significant diffusive motion. In
Fig. 3 we show examples of D(' '21(M) as functions of
e. As e exceeds a certain threshold ec, the diffusion con-
stants agree with the classical diffusion constants. The
threshold ec is much larger and less sensitive to ttt than
the case of K1 & Kc and K2 & Kc. The time-reversal test
reveals that the conditional mixing is recovered also in

this case. This experiment strongly suggests that if the
corresponding classical system has two sufficiently large
Lyapunov exponents the nature of classical chaos is
recovered in its quantal counterpart.

A plausible explanation may be as follows: Let us first
consider the single-rotor system. If the system is classi-
cally chaotic, the support of the wave function is expand-
ed and folded with time along a one-dimensional chaotic

manifold in the two-dimensional phase space. Thus the
distribution of the wave function in the phase space soon
becomes dense enough to induce self-interference every-
where in the phase space. This prevents further develop-
ment of the chaotic structure. In contrast to this, for a
system of two coupled rotors the dimension of phase
space is four, and the support of the wave function is ex-
panded and folded like a two-dimensional sheet if two

Lyapunov exponents are positive. Since the two-
dimensional sheet in the four-dimensional space is rela-
tively more sparse than the one-dimensional curve in the
two-dimensional space, the self-interference of the wave
function occurs much less efficiently than in the case of
the single rotor, and is unable to prevent the chaotic evo-
lution. The above explanation is, however, only a conjec-
ture and needs to be examined more severely. This will

be done in forthcoming publications.
In conclusion we have shown that the nature of

many-dimensional quantum chaos is drastically different
from that of few-dimensional quantum chaos. In partic-
ular the chaotic mixing is restored at least conditionally
under appropriate conditions.
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