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Potential for Mixing in Quantum Chaos
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A study of time reversibility reveals that a quantum chaotic system manifests the same potential for
mixing as its classical counterpart under the influence of externally applied noise. The quantum-chaotic
system, however, reveals its own nature below a quite small "classicalization" threshold of noise intensi-

ty: In the case of the kicked rotor there exists a quite wide regime for which the mixing property is un-

derstood neither from classical dynamics nor from quantum perturbation theory. The relationship be-
tween such a curious behavior and the pure quantum evolution without the noise is elucidated.

PACS numbers: 05.45.+b, 03.65.—w

There seems to be a serious discrepancy between clas-
sical chaos and its quantum counterpart (called "quan-
tum chaos" hereafter). Indeed, the dynamical behavior
of quantum chaos cannot simulate its classical counter-
part except for a quite limited initial stage of time evolu-
tion. ' In particular, a crucial fact is that quantum
chaos is quite stable and does not exhibit mixing. This
is because quantum motion is a quasiperiodic oscillation
determined by eigenfrequencies that form a pure-point-
set spectrum. However, it has recently been shown

that a continuous application of a very small dynamical
perturbation, such as random noise or the measure-
ment process, modifies severely the nature of quantum
chaos and enables it to regain the ergodicity possessed by
its classical counterpart. It is, therefore, a quite natural
question to inquire whether quantum chaos can regain
the mixing of its classical counterpart when it is subject-
ed to the continuous influence of dynamical perturba-
tions.

The aim of the present paper is to demonstrate that
quantum chaos under an application of very weak exter-
nal noise can completely simulate the mixing property of
its classical counterpart. There exists, however, a certain
"classicalization" threshold of noise level below which
quantum chaos reveals its own nature. We investigate
this regime in detail for the kicked rotor: The perturba-
tion approach is applicable only at noise levels much

lower than the classicalization threshold and there is a
quite wide regime where the characteristics of mixing
are explained in terms of a transient behavior inherent in

the pure quantum evolution process without the noise.
How can we characterize the quantum mixing quanti-

tatively? The decay of a correlation function provides
the most definite evidence for the presence of mixing. It
is, however, not easy to judge numerically whether the
decay of correlation is intrinsic or not. In view of adap-
tability to numerical simulation time reversibility is

easier to compute, and, moreover, it reflects the pres-
ence of mixing sensitively, as discussed later. We are in-

terested in the time reversibility of quantum chaos under
the continuous application of external noise: Evolve the
system forward from an initial state @; for a finite period
T by the normal time-evolution rule with an external
noise. Next, evolve the system back to a final state +f
by the time-reversed evolution rule for T. The noise pro-
cess is not reversed. Then the diff'erence hX between the
expectation values of an observable X in the final and in-

itial states,

~(T,e) =(l+f )Xi 4'f) —&e; i Xi e;&),

characterizes the time irreversibility of the system. Here
e. is the average noise intensity and the boldface angular
brackets indicate an averaging over the noise processes.

In classical chaos there exists at least two time scales.
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The first time scale Tc, is the one on which the system

loses its initial memory. It is roughly estimated to be

Tc, -lne/& (X is the largest Lyapunov exponent). The
second time scale is the one on which the noise causes
the system to diffuse out of the chaotic manifold. It is

estimated to be Tp, -e . Choosing T so that

T&, «T«Tc, (say, T-e '), we see that AX(T, e)
jumps discontinuously from 0 to some finite value as e is

increased from 0. This is a manifestation of the fact that

any perturbation approach breaks down at e =0. In con-

trast to this, the perturbation theory works well for in-

tegrable systems and M'(T, e) has no discontinuity at
e=0. ~(T,e), therefore, sensitively reflects the pres-

ence of the mixing in classical systems.
In the present paper we consider the well-known

kicked rotor as a sample system. The Hamiltonian is

A 2 +oo

H = +Kcose g b'(t n ——(„).

Here p = —i h il/ae and 8 are the momentum and posi-
tion operators, and g„ is the externally applied
frequency-modulation noise with the statistical property
(g„)=0, ((„g„)=( 8„„. A single-step evolution (t=n
+ g„ t =n+ 1+(„+1)is attained by operating with the
unitary operators of the pure process

U=exp( —ip /2h)exp( iKc st—/h)

and of the noise process P(n) =exp( —i(p /2h). The
reason why we take the kicked rotor as a sample system
is that it is globally translationally invariant in momen-
tum space, and the irreversibility

m(T, e) =&(ap')f —&ap');),

where Ap:—p —(p); and (X); f=(Pj f IXI% f), is char-'
acterized by the diffusion constant Dg (e)
=limT ~(T,e)/2T, which is independent of the re-
versal time T. The Dg(e) agrees with the diffusion con-
stant in the ordinary sense which is defined only for the
forward process, i.e., limT &(hp )f)/T. This has been
verified through extensive numerical simulations. To
simplify the problem we assume that the initial-state
momentum po is large enough that P(n) can be replaced
by exp( —ie„p/h), where e„=2(„po ((e„e„)=B„„e).
Then the classical counterpart of the kicked rotor is de-

Dg(e) =(e'/&')Eel&a Ip I p& I'(&pl&p'I p) —
&a l&p

where I a) and
I p) are the eigenstates of U. If Dg(e)

~e" persists until a=0, then perturbation theory breaks
down also in the quantum-chaotic system. This, howev-

er, cannot be true considering that all the eigenstates are
localized and the quantum spectrum forms a pure point
set.

The results of careful numerical simulations at a quite
small noise level are summarized in Fig. 2. Evidently

scribed by the noise-driven standard map

(8,+ l,p„+1)= (8„+p„+i+ e„,p„+K sine„ ).

The classical dynamics of the standard map undergoes
a transition to global chaos as K exceeds the critical
value Kq =0.97. . . , which leads to difl'usion across
momentum space with (p, —po) =Dcit. ' In the quan-
tum motion, however, such a dift'usion saturates at
(Bp) -Dcl/h, ' because of Anderson localization of
the quasienergy eigenstates of the operator U. 6 Here pp
is the localization length of the eigenstates in momentum
space.

At K well below Kc, the system is almost integrable
and the classical-quantum correspondence holds quite
well. Indeed, the numerically computed quantum ir-
reversibility Dg(e) agrees quite well with the classical
one Dcl(e) for small h. Furthermore, perturbation
theory works well until e=1 in both the quantum and
classical cases. Hence Dcl(e) =Dg(e)-e and there is
no discontinuity at e =0.

In the chaotic regime K) Kc, Dcl(e) jumps discon-
tinuously from 0 to the classical chaotic diffusion rate
Do(e=+0) at e=0. In contrast to this, Dg(e) has no
discontinuity at e=0. However, as depicted in Fig. 1,
Dg (e) becomes in complete agreement with Dci(e) when
e exceeds a classicalization threshold ec. Usually the
effect of noise is supposed to assist the mixing. However,
a quite interesting fact is that Dcl(e) decreases consider-
ably from Do(e=+0) before it is enhanced again by
the noise-assisted mixing. The decrease of DD(e) im-

plies that the noise partly damages the classical horse-
shoe dynamics which is the essential origin of chaotic
mixing. ' This phenomenon may therefore be called
noise suppressed -mixing. " The fact that above

Dg (e) reproduces entirely the details of Dcl(e) including
the noise-suppressed mixing means that noise restores
the classical horseshoe dynamics in quantum chaos.
Thus quantum chaos has the same potential for mixing
as its classical counterpart under the influence of noise.
The existence of such mixing characteristics is being
verified also in other quantum-chaotic systems.

Below ec, however, the quantum system reveals its
own nature: Dg(e) is found to decrease according to a
power law Dg(e) ~e' with an exponent v=1.0. Such a
behavior cannot be explained at all by the standard per-
turbation theory. Indeed perturbation theory predicts

'
I a) )- ape'/f', t

Dg(e) crosses over at a certain e=eT from Dg(e)-e'
to the perturbative result Dg(e) -e . Thus there exist
three regimes of noise level: classical regime, t. ))eg,
Dg(e) Dcl(e); quantum regime, eT «e«ec, Dg(e)
~e'(v=1.0); and perturbative regime, e«eT, Dg(e)
a: e . As shown in Fig. 2 both ec and the ratio eT/ec de-
crease progressively with decrease in h. The perturba-
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FIG. 1. Classical (open circles) and quantum (filled circles)
irreversibiiities at relatively large noise intensity (l'i/2/t
=

40II, ,K 2.0).
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tion theory thus breaks down above eT, which is much
smaller than ec.

In what follows we discuss the underlying mechanism
leading to the characteristics mentioned above. This en-
ables us to determine the threshold values ec and eT.
Let us introduce the force-force correlation function

g(e, t)=K (sin(), sin&a) and the area defined by
a(e, t):—g,'- —,g(e, s). Here X, :—V(t) 'XV(t), and
V(t) is the evolution operator V(t)=Q/-oUP;. Then
the Heisenberg equation P, +1 —P, =Ksine, leads to the
relation Dg(e) =a(e, t=~). On the other hand, the
moment M, (t)—:(hp, ), which is expressed in terms of
a(e, t) as M, (t) =g,'-oa(e, s), saturates at (6p) for
@=0beyond a characteristic time T, (Anderson localiza-
tion). This means

a(a=0, t) 0
r » T,

for a=0. For finite e, however, the effect of noise
modifies significantly the quasienergy of V(t) in a ran-
dom manner, and the correlation function g(e, t) decays
on a certain time scale i, . i, is estimated in such a way
that the accumulated phase in the product of the pertur-
bation operators pg -'1 e;/6 —bpe Ji,/6 amounts to
=1. This yields i, -x'/e (a.=h /bp ). Since g(e, t)
may be replaced by g(a=0, t) for it i « i gD(e)
should be related to a(a =0,t) as Dg(e) =a(t.'=O, tt/e ).
In this way the irreversibility is related to the pure
(a=0) time evolution process. We note, however, that
such a relation breaks down for small t. , because
a(e, i, ) =0 for i, =r/e )&T, does not reproduce the
perturbative result in the perturbative regime. This im-
plies that K/eT2 —T„ i.e., eT- (a/T, ) '/2.

The relation Dg(e) =a(@=0,a/e ) tells us that the
pure time evolution should have the following properties
to be consistent with the behaviors in the classical and
quantum regimes: Up to the time T, =x/eP the moment
M, -o(t) =g,'=oa(a=0, s) grows in agreement with the

FIG. 2. Global characteristics of quantum irreversibility for
various tt/2/t. (a) tt/2/t= —,'„, (b) 1024 (c) p~g and (d) 409,

(K-2.0).

classical dynamics, i.e., M, - (ot) =DcLt, and beyond T,
it increases according to a power law M, =o(t)~ts with
the exponent p=1 —v/2. The former behavior agrees
with the well-known result for the kicked rotor. Thus
T, is the time scale on which the quantum-classical
correspondence applies and is estimated to be Ink/X. ' "
Hence we obtain eq- (x/T„) '/ —6/(bpT„'/2). Howev-

er, the power growth for T, & t ( & T, ) has not been pre-
viously reported. To verify this power growth we depict
in Fig. 3 a typical transient evolution of M, = (to) start-
ing with a momentum eigenstate. Obviously, there are
two time scales corresponding to T, and T, between
which a power growth with the exponent p very close to

~OO+ ~
~ ~

r
~ gC.

/

FIG. 3. Transient behavior of the moment M, =o(t) =(Apt )

for the pure (e =0) process. Inset: Log-log plot.
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0.5 is observed. This predicts v=2(1 —P) —1.0, con-
sistent with the value obtained for D(t(e) in the quantum
regime. Thus the curious behavior in the quantum re-
gime is attributed to the power growth in the pure quan-
tum time evolution.

The second threshold eT stands for the convergence
radius of the perturbation theory. It is evaluated with

use of the fact that D(l(e) in the quantum regime must

agree with the classical result D(2(e) =Dci and the per-
turbative one Dg(e) —(e /tt1 )(Bp) at e=ec and

e = eT, respectively. This yields

eT/ec = [DciT,/(Sp)'] 'l" ")-h/lip

Seeing that eT/ec-(T„/T, ) ', the smallness of the ratio
eT/ec is a reflection that the pure quantum evolution is

governed by the two characteristic times T„and T, with

quite different scales in the semiclassical limit.
This work was supported through a Grant-in-Aid for

Scientific Research provided by the Ministry of Educa-
tion, Science, and Culture.

G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, in

Stochastic Behavior in Classical and Quantum Hamiltonian
Systems, edited by G. Casati and J. Ford, Lecture Notes in

Physics Vo. 93 (Springer-Verlag, New York, 1979), p. 334;
B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyanski, Soc.
Sci. Rev. C 2, 209 (1981).

2M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, Ann.
Phys. (N. Y.) 122, 26 (1979).

3M. Toda and K. Ikeda, Phys. Lett. A 124, 165 (1987).
4D. L. Shepelyansky, Physica (Amsterdam) 8D, 208 (1983);

see also G. Casati et al. , Phys. Rev. Lett. 56, 2437 (1986).
~T. Hogg and B. A. Huberman, Phys. Rev. Lett. 48, 711

(1982).
S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev.

Lett. 49, 509 (1982).
7E. Ott, T. M. Antonsen, Jr. , and J. D. Hanson, Phys. Rev.

Lett. 23, 2187 (1984).
S. Adachi, M. Toda, and K. Ikeda, Kyoto University Report

No. RIFP-736, 1988 (to be published).
9D. L. Shepelyansky, Phys. Rev. Lett. 56, 677 (1986).

' For example, J. Moser, Stable and Random Motion in
Dynamical Systems (Princeton Univ. Press, Princeton, 1973).

''More precisely, the origin of such a behavior is due to a
strong inhomogeneity in conservative chaos. It has a resem-
blance to the "noise-induced order' discovered in dissipative
chaos [K. Matsumoto and I. Tsuda, J. Stat. Phys. 31, 87
(1983)].

658


