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Theory of Adiabatic Nuclear Magnetic Ordering in Cu
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The phase diagram for the nuclear magnetic ordering of Cu in a magnetic field is theoretically found

to exhibit three distinct phases in accordance with recent measurements. It is a consequence of the frus-

trated ground-state properties of an antiferromagnetic fcc structure with nearest-neighbor Heisenberg
and dipolar interactions, a model also of relevance for the resonating-valence-bond problem. The adia-
batic process is discussed, and nonadiabaticity caused by off'-diagonal spin-spin interactions in the or-
dered, canted phase is found to be in accordance with the experimental value.

PACS numbers: 75.25.+z, 75.10.jm, 75.30.Kz, 75.50.Ee

Magnetic ordering of the nuclear spins for Cu has
been observed below 60 nK, with the use of susceptibility
measurements. ' Recent neutron-scattering measure-
ments have confirmed this and revealed that the struc-
ture is a simple type-I antiferromagnet. There are, how-
ever, three distinct phases as a function of an external
field, with very different static susceptibilities and
neutron-scattering intensities. This has not previously
been understood and it is the purpose here to clarify this
and also discuss what happens during the adiabatic
demagnetization process. The problem is that of a frus-
trated antiferromagnetic ground state and is therefore
closely related to the resonating-valence-bond problem,
which is currently much discussed in connection with the
high-T, superconductors. The nuclear Cu system is an
ideal model system and may be of considerable relevance
for a closer understanding of such ground-state prob-
lems.

Copper has a fcc lattice structure and the nuclei of Cu
have spin I= —,'. These interact via the dipolar interac-
tion and the Ruderman-Kit tel interaction, which is
dominant, as calculated from first principles. Further-
more, the nearest-neighbor (nn) interaction is dominant
by an order of magnitude. The interactions give rise to,

in the mean-field theory, a simple type-I antiferromag-
netic (AFM) structure. Since all nn bonds form trian-
gles the system is very frustrated and the AFM structure
is in simple theories infinitely degenerate with respect to
linear combinations of ordering vectors k, =(z/a)a,
where a is a unit vector along the cubic directions x, y,
and z; a is the lattice constant. The dipolar interaction
requires only that the spins are perpendicular to the k,
vector. In a field the general structure is then described
by any of the degenerate 1-k, 2-k, or 3-k linear combina-
tions (denoted by I, II, or III). By unpolarized neutron
scattering, or any other linear method, it is not possible
to distinguish between the multi-k structures or a multi-
domain single-k structure. I shall now demonstrate that
nonlinear effects indeed lift the degeneracies and stabi-
lize different phases as observed experimentally. The
phases are distinct because of different quantum-
mechanical ground-state correlations. Indeed, correla-
tion effects play a significant role in Cu. Thus the order-
ing temperature TN is reduced to 0.25TN (mean field)
when correlation effects are included.

Consider a nearest-neighbor fcc antiferromagnet with
nn Heisenberg interactions J and dipolar interactions D
per bond in an external field H:

If =
2 g, b {JI, Ib+D{I, Ib —3(I, r)(Ib r)]j Hg, I;, —

where a and b represent sums over the four sublattices in
the fcc structure, see Fig. 1, and r is the interconnecting
unit vector. If we assume the same moments M for the
four spins at a = 1, 2, 3, and 4, the mean-field Hamiltoni-
ans are

&gfF" = —6J'M —g, (H —3J'M)I,',

~AFM 2J~M2 (2J&)
—1H2

(2)

2
where z' denotes the local quantization axis along the lo-
cal canted moments, J'=4J+D. For structures I and II,
H =4J'M sin8, and for structure III, H =2J'M(l+
sin 8).

Let us define the population factor p =exp( —PJ'M);

FIG. 1. Three-dimensional representation of a 3-k structure
III for the fcc lattice indicating the four sublattices. Various
structures can be distinguished by their diAerent projections
onto the x-y plane; see Fig. 3.
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for H &4J'M, p =exp[ P—(H —3J'M)], the average magnetic moment M=(3+p —p —3p )/2Z, and the reduced

partition function Z =1+p+p +p, P =1/kT and k the Boltzmann constant. The free energy per spin is

F r '"= ——' J'M (M + 1) —k T lnZ ——', H',

F"" = ——' J'M (M + 1) —k T lnZ —MH' —(8J') 'H',
(3)
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FIG. 2. The calculated mean-field phase diagram (MF) in-

cluding isentrops (thin lines). The thin horizontal lines indi-
cate approximately the phase separation between the structures
I, II, and III according to Fig. 3. The phase line R represents
the fluctuation-reduced phase line. It has been made to coin-
cide with one experimental (H,S) transition (Ref. I). All oth-
er observations (Ref. 1) are then in good agreement with the
predicted phase diagram R. Full lines indicate second-order
transitions and dashed lines, expected first-order transitions.

where H'=H —4J'M. The entropy assumes the form
S/k =PJ'M( 2

—M)+lnZ. At the critical field H,
=4J'M there is a second-order phase boundary. The re-
sulting phase diagram is shown in Fig. 2. The structures
I, II, and III are degenerate for all fields H &4J'M,
within the mean-field theory. This was the result previ-
ously found. ' However, for k T & k To =0.95 one finds

that with unequal sublattice moments structure III is
favorable. This stabilizes III against I and II for T & To
even within the mean-field theory. Furthermore the
phase transition to the paramagnetic phase is now of first
order.

By an ideal adiabatic cooling process, the system is
made to start out in an equilibrium state at a given tern-

perature in a high magnetic field H. If H is decreased
rapidly compared with the spin-lattice relaxation time,
no heat dg is exchanged with the lattice, which implies
that the entropy must be constant, since dg =TdS =0.

The energy levels of //PAL', Eq. (2), are equidistant with

a separation H —3J'M. If kT decreases as H —3J'M, it
follows that the population factor p is constant as well as
the entropy S/k. The isentrop in a (T,H) plot is thus

simply a straight line through H=3J'M. The slope is
determined by the initial polarization M, which is also
constant. At the phase boundary to the AFM structure,
the field is replaced by the constant internal field J'M.
The isentrops are therefore independent of field in the or-
dered phase, within mean-field theory. The isentrops are
indicated by thin lines in Fig. 2, and the entropy is nor-
malized by the maximum entropy S,„=kin(2I+1)
=kln4. Experimentally one finds, however, two distinct
crossings of phase lines in the ordered phase, when fol-
lowing a constant-entropy curve. This is incompatible
with the above results of the mean-field theory.

Let us now consider the effect of off-diagonal terms in

the Hamiltonian (1). In the paramagnetic phase the di-

pole part includes terms of the kind I;Ib+ and I;II, ,

which create or destroy spin flips on site b. The effect of
this can be evaluated by perturbation theory. The effect
of the dipolar single-flip terms is to make the isentrops
deviate from the straight lines in Fig. 2 by a bending to
lower fields when approaching the phase boundary. The
effect is relatively small and is not important qualitative-
ly. Dipolar terms of the kind I,+Ib+ and I, Ib have a
similar effect, but are even less important. However, in

the AFM phase both the isotropic and dipolar parts de-
velop effective anisotropic interaction terms when viewed
from the local, canted coordinate systems; see Fig. 1.
For example, the isotropic interaction Hamiltonian has
the form, for relatively canted spins P gt J[I,"Ib
—cos(29)Ii'Ib ]. This Hamiltonian can both move a
spin flip from site to site, and simultaneously flip two ad-
jacent spins against the local molecular fields. The latter
process is similar to local crystal-field transitions and
should be included before considering the former, low-

energy spin-wave-type excitations which do not contrib-
ute at T=O. Two important features can now be noted:
(a) The interactions bring in a field dependence of the
thermodynamic quantities in the ordered region, where
there was none in the mean-field theory, and (b) the
structures I, II, and III differ qualitatively because of the
different relative cantings. The pair interactions can
therefore determine the phase diagram and distinguish
between the various structures I, II, and III.

Let us evaluate the effect of two-spin-flip terms
(I,+Ib++I, Ib ) using second-order perturbation theory
for a cluster of the four sublattice spins; see Fig. 1. The
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FIG. 3. The calculated regions of stability at T=O of vari-
ous multi-k structures as a function of field along (001) and
the relative strength of the dipolar and exchange interaction in-
dicated by 3D/J'. For Cu the latter is between 0.9 and 0, 8.
For fields along the (101) direction there is a smooth transition
between two 1-k structures at H —0.3J'. For 3D/J') l. l a
mean-field calculation (Ref. 5) shows that an incommensurate
structure with ordering vector along I K is more stable than the
type-I AFM structures considered here. Quantum fluctuations
will make the I K phase penetrate to lower D values along the
phase separation lines. The various structures are depicted by
their projections onto the x-y plane; see Fig. 1.

ground state with energy 0, say, has a wave function

i 0) =
i Ii, 12,I3 14) with the maximum moment I, = —',

along the local fields of strength J'M and direction z,'.
This state is coupled to states with energy 2J'M having
two spin s flipped and wave functions of the type

i 2) =
i I i

—1,Iq
—1,13,I4), and various permutations.

There is no coupling to the one-spin-flipped cluster states
i 1) at energy J'M. Second-order perturbation theory
shifts the cluster levels of energies (O, J'M, 2J', M) by
( —6„,0, +6„),where n =I, II, or III. The lowest three
levels therefore remain equidistant so that the relative
population of the levels remains unchanged at a given
temperature. The perturbed wave functions are of
course mixed. The state n with the largest 5„is the
ground state; 5„is found to be of the order of 10% of
J'M. The cluster calculation is similar in spirit to
Anderson's randomly distributed singlet-cluster theory.
All possible 1-k and 2-k structures and the 3-k struc-
tures III of the type shown on Fig. 1 were investigated.
It was found that only the structures with the spin pro-
jections in the high symmetry directions in the x-y plane
are relevant. The relative stability of the four-sublattice,
simple type-I antiferromagnetic multi-k structures are
shown on the phase diagram Fig. 3. At H=O the results
agree with a recent spin-wave calculation; however,

there the 3-k structure III was not investigated. The
strength of the Ruderman-Kittel interaction in Cu is
measured by a quantity R defined in Ref. 1. From first-
principles calculations one finds R = —0.34. Using this
value gives, for Cu, 3D/J'=0. 9 in Fig. 3, and I predict a
transition between the I, II, and III structures as a func-
tion of the magnetic field along (001). The experimental
value' for Cu is R = —0.42, yielding 3D/J' =0.8. For
this value the stable phase for intermediate fields fluctu-
ates between the 2-k and 3-k structures. For the field
along the (101) direction one finds a simpler phase dia-
gram involving a smooth transition at H-0.3H, be-
tween two high-symmetry 1-k phases. An incommensu-
rate I EC phase will penetrate from higher D values along
this phase separation line. This may be the reason for
the observed low neutron-scattering intensity for inter-
mediate fields. The conclusion is that for a relevant
range of R values the magnetic structure of Cu is pre-
dicted to show at least three phases as a function of mag-
netic field. This is in agreement with the experimental
results. '

For finite T the effect of spin-wave excitation terms
I, Ib in all phases I, II, and III is to lower the transition
temperature TN relative to the mean-field value
TN(MF). However, from a recent Monte Carlo com-
puter simulation study on a two-dimensional model sys-
tem for Cu, it was found that, although the phase sepa-
ration line to the paramagnetic phase was much reduced
in temperature, the entropy S(T) versus temperature
remained quite accurately the same as calculated by the
mean-field theory and the isentrops were not reduced
significantly in temperature. It is therefore expected that
the fluctuation-reduced phase boundary approximately
follows a temperature-renormalized curve, marked R in

Fig. 2, as the true phase boundary to the paramagnetic
state. The arguments given above for the relative stabili-
ty of the structures I, II, and III should remain valid
since they are based on the angular variation of the mo-
ments, but not the temperature. From renormalization-
group theory it has been argued that at H=0 the phase
transition is a fluctuation-induced first-order transition,
and it was shown above that the transition to phase III is
of first order at high T. The phase diagram R is in very
good agreement with that found experimentally by Hui-
ku et al. In fact, if the theoretical phase line is adjusted
to match the experimental phase transition found at one
field H and entropy S, all other experimentally found
transitions coincide with the theoretical phase diagram.

The off-diagonal terms give rise to a field dependence
of the entropy. Taking into account the perturbation of
the cluster levels, one can find the perturbed population
factors p and expand to first order in h,„.The constant-
entropy lines are then bent to higher temperatures for
H 0. The shift is proportional to Jd„(H)dH, yielding
kd T=0.1J' at H=0 and kT/J') 0.3. Consider now a
slow demagnetization process which permits the system
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to attain thermodynamic equilibrium, followed by a fast
switch-on of a large magnetic field. At increasing fields
it is not possible to decrease the temperature (increase
the magnetization) corresponding to the mixing effect of
the ofI'-diagonal terms. If we assume instead a simple
canting of the moments with the H=O values, the isen-

trop follows the vertical, mean-field isentrop until it
reaches the phase boundary. The entropy increase then
corresponds, from Fig. 2, to 0.1/kln4. The calculated
entropy increase is in agreement with the nonadiabatic
entropy increase 0.12/k ln4 found experimentally. '

The magnetic phase diagram for Cu has been dis-
cussed with use of a simple model. It is concluded that
the nearest-neighbor antiferromagnetic fcc lattice with

Heisenberg and dipolar interactions exhibits several dis-
tinct multi-k ground states as a function of a magnetic
field. A similar behavior was previously found ' for a
simple linear antiferromagnet at intermediate fields.
There it was found that the antiferromagnetic short-
range ordered structure was further modified by a long-
wavelength modulation. It is likely that such a behavior
can also occur for the fcc intermediate-field case. Nona-
diabaticity caused by oA'-diagonal spin-spin interactions
was also discussed and estimated to be of the same order
of magnitude as found experimentally. Finally, it is em-
phasized that the simple model has general applicability,
for example, also to the resonating-valence-bond prob-
lem.

It is a pleasure to thank Matti Huiku for inspiring dis-
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