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Spin Dynamics in the Square-Lattice Antiferromagnet
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We apply the Schwinger boson mean-field theory to the square-lattice Heisenberg antiferromagnet at
low temperatures. For spin 2 we confirm the renormalized classical behavior of the correlation length
tc (T) without appealing to spin-wave theory. We also present a detailed calculation of the dynamical
structure factor. A quasielastic peak is featured near q (tr, tr), while for

~ q —(tr, tr)
~

&& tc, spin-wave
ridges appear. The uniform susceptibility interpolates between spin-wave results at T 0 and the high-
temperature series of Rushbrooke and Wood. Our theory is distinct from theories in which fermionic
spinon excitations determine the low-temperature spin dynamics.

PACS numbers: 75.10.Jm, 67.40.Db, 75.10.+x

Interest in the two-dimensional quantum Heisenberg
model has been greatly revived since the discovery' of
quasi-two-dimensional antiferromagnetism in the un-

doped, insulating La2Cu04. This behavior may be fun-

damentally related to the fact that the material becomes
a high-T, superconductor under doping of Sr or Ba. A
similar antiferromagnetic phase has been observed in

YBa2Cu30s+„ for x & 0.5. As a first approximation, the
copper spin dynamics can be modeled by the square lat-
tice S = —,

' quantum antiferromagnet,

H=J S; Si,' S S(S+1),
i,j)

where J & 0 is the superexchange energy, and the sum is
taken over all bonds in the lattice.

The continuum theory which corresponds to the d-
dimensional quantum Heisenberg model is that of the
(1+1)-dimensional nonlinear o model3 with coupling
constant g, g is a decreasing function of the spin S.
Since the three-dimensional o model orders at g (g, 80,
this suggests that a critical spin S, can be defined such
that for S & S, and d =2 the ground state of the quan-
tum antiferromagnet possesses long-range order. In this
regime, the disordering effects of quantum fluctuations
can be treated perturbatively [in (2S) '1 by expansion
around a broken-symmetry Neel state by use of spin-
wave theory (SWT). In a recent Letter, Chakravarty,
Halperin, and Nelson (CHN) have evaluated the
temperature-dependent correlation length K

'
by study-

ing the model in a slab of finite thickness. They applied
Oguchi's SWT to determine the appropriate value of
the coupling at S= —,', and found that g &g„and that
the correlation length has renormalized classical behav-
ior tc '=exp[ A/Tj, where A is—weakly temperature
dependent and finite at T=O. They also demonstrated
the consistency of their tc(T) with the experimentally

determined correlations. '

In a different approach, we recently developed the
"Schwinger boson mean-field theory"s (SBMFT) as a
useful way of treating a large class of lattice quantum
antiferromagnets in their rotationally invariant phases.
For the square lattice model, we arrived at the same con-
clusion as CHN, without assuming that the ground state
is ordered and the spin-wave expansion applicable. Con-
ventional SWT which describes quantum fluctuations
about a putative ordered ground state, breaks down at
finite temperature in low dimensions because of the
Mermin-Wagner theorem. Our theory, which preserves
rotational invariance, describes a finite-temperature
magnetically disordered phase. It hinges on a steepest-
descents approximation to a functional integral, and is
exact in the large-N limit of a class of generalized
SU(N) invariant models. Like SWT, our theory pro-
vides an appealingly simple Bose liquid descrip-tion of
the excitations.

In recent literature, there have been several alternative
descriptions of the quasiparticles of the (perhaps frus-
trated) quantum antiferromagnet. Some of the prom-
inent proposals are, e.g. , fermionic "spinons" of the
resonating valence-bond theory, s neutral fermions of cer-
tain (2+1)-dimensional field theories, 9 and excitations
analogous to those in the fractional-quantum-Hall
theory. ' These theories describe various "quantum
spin-liquid" ground states, i.e., disordered phases, and
excitations that are distinct from bosonic spin waves.
Many of them have been linked to proposed mechanisms
of high-T, superconductivity in La2 —„Sr„Cu04 and
YBa2Cu 307.

In order to allow experiments to distinguish between
the models, we present a detailed calculation of the
dynamical structure factor S(q, co;T), as well as the uni-
form susceptibility and specific heat. We also make con-
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nection with T =0 SWT, and with high-temperature
series.

The spin operators are represented by two Schwinger
bosons (m =1,2), viz. , [a;,a; ] =8;;b, with the con-
straint p =1a;t a; =2S. The spin operators of Eq. (1)
are given by a)a2=S+ ( —S ) and (a1ta1 —afar)/2:—S' ( —S') on sublattice A (B). The Hamiltonian (1)
is written as

H= ——'Jg( )A A. i+2NJS, (2)

where N is the number of lattice sites, and A;";

a;t aj~ . It is easy to check that Eq. (2) consti-
tutes a faithful representation of Eq. (1). We use units
of h =ka =a =1, where a is the lattice constant.

We first apply a Hubbard-Stratonovich transforma-
tion to the Langrangean in the path integral representa-
tion of the partition function using a complex variable

Q;; at each bond. The constraint, given above, is en-
forced by a "chemical potential" field A. ; at each site.
The mean-field (MF) theory amounts to a steepest-
descents approximation, where Q and k acquire static
uniform values, that are determined by our extremizing
the free energy. The MF Hamiltonian is given by

H "=g; [Xa; a; +gph(i, t)S+ —,
' Qgq(alt a;+s +a; a;+s )] N) S—+Ng /J+2NS . (3)

Here h(i, t) is the dynamical magnetic field. For h =0, it can easily be verified that the Hamiltonian does not break ro-
tational symmetry. H " is readily diagonalized by the quasiparticle operators: al, =cosh81,al, + sinh81ca —lc, where

al, =g&exp(ik j)at . Here, tanh(28|, ) = —4gyl, /)(, and yl,
= —,

' (cosk„+cosk~). The dispersion of the quasiparticles
[ag} is cog

= [X —(4Q yg ) ] '

The steepest-descents equations are derivatives of the MF free energy f "with respect to the MF parameters:

—,
' df "/d) =„[d k/(2z) ]cosh(281, )(nl, + —,

' ) —(S+ —,
' ) =0, (4)

—,
' df /dg= —4 [d k/(2n) ]y1,sinh(281, )(nl, + —,

' )+4Q/J=O.

Here, n1, is the Bose occupation [exp(cok/T) —1] '. The structure factor Im(S'(q, co)S'( —
q, co)) is

S "=—,
' rrgq[cosh[2(81, +8„+~)]+1}nl,(nl, +q+1)b(co„+q —

co1,
—co)+ —,

'
rr+1, [cosh[2(81,+81,+~)] —1}

x [nl, +8(co)][nl, +q+8(co)] b(col, +q+ cok

(s)

where 8(co) is the step function. The first term corre-
sponds to "normal" scattering of spin waves, while the
second is the "anomalous" contribution, representing
creation and anhilation processes of two spin-wave exci-
tations. Here it is convenient to measure the reduced
momentum with respect to the antiferromagnetic vector,
i.e., q=q —(n, n). In (6) we have exploited the decou-
pling of the two Schwinger bosons, in the Hamiltonian
(3).

It is convenient to parametrize the dispersion co1, in

terms of the spin-wave velocity c =JSQ, and an inverse
correlation length etc = [g[X —(4Q) ]}'/ . The disper-
sion is then given by co1, =c[()c/2) +2(1 —yg)l'/. We
note that tc/2 serves as a cutoff in the momenta integra-
tions in Eqs. (4)-(6). Our spin waves are therefore
"massive" when s.e0. The antiferromagnetic spin corre-
lations were previously shown to decay as R
xexp( —xR), for large distances R. At low tempera-
tures, the solutions of Eqs. (4) and (5) yield

TABLE I. Results of the SBMFT compared to SWT (Refs.
4 and 5), and to the o model calculation (Ref. 4) (CHN). Z„
Zz, and Z, are the T 0 limit of the renormalization con-
stants of the spin-wave velocity, susceptibility, and correla-
tion-length exponent, respectively.

Theory Coefficient S= —,
1 S=1

!
agrees, to one-loop order, with the renormalization-group
calculation of the classical Heisenberg model. " Since
Z„(S= —,

' ) =0.246, it is apparent that quantum fluctua-
tions drastically reduce the correlation length at finite
temperatures from its classical value. On the other
hand, v ' still diverges at T=0, which implies that this
system has a Neel ordered ground state, in agreement
with perturbative analyses' and numerical results for
finite-size systems. "

At this point we can compare our theory to SWT ' at

c =Z, J8JS; x =exp [—Z„2xS(S+ 1 )J/T].

The quantum renormalization factors Z, (T,S) and
Z (T,S) are obtained numerically for T 0 and small
values of S in Table I. It was also previously shown
that Eq. (4) ensures that Z„has a finite T=0 limit for
all S)S, =0.2, and is only weakly T dependent for
T (JS(S+1). For large S, lims Z, =1, and Eq. (7)

SBMFT
SWT
SBMFT
SWT
SBMFT
SBMFT
CHN
SBMFT

Zc
Z, =1+0.158/2S
Zx
Zg =1 —0.552/2S
JS(S+1)(dZ|/dr)
ZK'

Z =AcZ, Zi/a J8(S+1)
8 =C., 1T/S(S+ 1)Jl

1.159
1.158
0.53+ 0.01
0.448
0.22 ~ 0.01
0.246
0.200
1.3 ~ 0.05

1.079
1.079
0.73 ~ 0.01
0.724
0.27+ 0.01
0.442
0.421
1.2 ~ 0.05
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T =0, and we notice the following facts:
(1) The values of the spin-wave velocity renormaliza-

tion Z„Eq. (7), agree well for S = —,
' and 1, as shown in

Table I. Since x vanishes at T=O, our quasiparticle
dispersion matches the spin-wave result.

(2) The expression for fMF is twice that of SWT.
This is the same situation we have previously encoun-
tered when comparing our ferromagnetic Bose-liquid
theory to Takahashi's ' finite-temperature modified

SWT, which has been quantitatively successful in repro-
ducing the numerical Bethe Ansatz solution for the
S= —,

' chain at low temperatures. In that system, we

were able to explicitly show that the Gaussian correc-
tions reduce the overcounting of the leading term in f
by a multiplicative factor of —,'. For the square lattice
antiferromagnet, however, we have not yet attempted to
compute the Gaussian corrections.

(3) The spin-correlation function S " [Eq. (6)] is ex-

actly —', times the rotationally averaged expression
of SWT. It can be easily verified, by use of Eqs. (4)
and (6), that the susceptibility sum rule yields

gq v S "=S(S+1)/2 which is exactly —', too large.
Therefore, in order to obey the condition that our

theory should match SWT at T =0, for large S, and also
obey the sum rule, we correct our free energy and corre-
lation functions by F= ,' f ", and—S(q,co)—= —', S
We suggest without proof that this normalization partly
compensates for the fluctuation effects, missed by the
static MF theory.

The calculation of Eq. (6) is greatly simplified by our

expanding col, to quadratic order in k and k. This allows
us to perform the angular integration analytically, and
only the radial integration numerically. In Fig. 1, we

plot Eq. (6) in the positive q, co quadrant, where q= i q i.
For (co,q) & (T, T/c) there is a reflection symmetry on
both energy and momentum axis. Two distinct regimes
are observed: (a) (co,q) ( (ctc, ~) and (b) (co,q)
»(cx., x.). Region (a) is a quasielastic peak, which in-

creases, and narrows with decreasing v. This peak turns
into the magnetic Bragg peak at T=0, and its width
reflects the overdamped nature of the spin waves with
wavelength longer than the coherence length. In region
(b), the L integrations in Eq. (6) are dominated by
k= 0, and k= 0. Using Eq. (4) and neglecting terms of
order cq/T, we find

S "=[J2crr(S —S,)/3co] [nq+1]8(co cq), —

which is proportional to the naive SWT result. The
spin-wave peaks, and the resulting q T-independent

~o

0
U
0

4-

~ O
O
O

U

g

FIG. 1. The structure factor Eq. (6) at T« JS(S+1). q is
the distance from the antiferromagnetic wave vector (z,z). x.

is the inverse correlation length Eq. (8), and c is the spin-wave
velocity. For low frequencies co((T, the structure factor is
symmetric under reflection on both q and co axis.

correlations, agree with those predicted by other ap-
proaches. ' An important effect of finite temperatures is
to "soften" the magnetization group velocity Bcoq/|lq in

comparison to c at long wavelengths. We note that there
is a gap between the normal (co & cq) and the anomalous
[co) c(x. +q )'i ] contributions of Eq. (6). We sus-
pect, however, that this structure is an artifact of the
static MF approximation, and that it might be washed
out by fluctuations in X and Q. Nevertheless, it would be
interesting to see whether any double-peak features
could be experimentally resolved.

The integrated ("equal time") correlation function is
S(q) =

3 f— deox 'S "(q,co), where we included the
correction factor of —', discussed above. In the regime of
cq « T« JS(S+1), S(q) is given by a sharply peaked
function at small values of q, S(q) = —", rr '(ST/
hctca) F(q/x), where

F(x) = dkk((k2+1)[[(k+2x) +1][(k—2x) +1]]' ) (8)

This limit represents the "classical" part of the fluctuations, which is distinct from the contributions of the spin-wave
ridges. S at large q/x (but still cq/T«1) goes as T lnq/q . Equation (8) should be useful in the experimental fitting
of the values of x and c, in the region where most of the scattering is concentrated. In contrast to this result, the fer-
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FIG. 2. The uniform magnetic susceptibility for different
spin value S. High-temperature series (HTS) and the
molecular-field theory are given in Refs. 16. The SWT (Refs.
4 and 5) susceptibility is rotationally averaged. The SBMFT
interpolates between the two regimes.

mionic (MF) theory of Baskaran, Zou, and Anderson,
and also the flux phase of AfHeck and Marston yield

S(q) which are spread throughout the Brillouin zone,
with much weaker singularity at q =0, even at T =0.

It is interesting to compute the uniform susceptibility,
which is given by X=(g p /T)S(q=0) =g p Z&/8J. In
Fig. 2 we plot our X(T) (for the applicable range of T)
and show how it interpolates between the rotationally
averaged SWT result and the high-temperature series
expansion of Rushbrooke and Wood. ' It is also impor-
tant to note slight discrepancies for the value of Zz be-
tween our result and that of Oguchi as seen in Table I.
The disagreement, which alfects CHN's determination
of the correlation-length renormalization Z„, probably
arises from either of the two reasons: (1) the smallness
of S = —,

' or (2) the zero-temperature limit of the SWT
in 2D is tricky since the k summations are logarithmical-

ly divergent. Numerical simulations might be able to
determine which approximation is better in this limit. In

any case, the agreement (as expected) improves with the
size of S. We also present our result for the specific-heat
T coefficient 8 in Table I.

Our formalism allows a natural extension to the
three-dimensional problem with interplanar coupling
(J't'«J). The Schwinger boson dispersions would ac-
quire a weak ~, dependence, and therefore for
J(tra)»J', disordered two-dimensional behavior is ex-

pected. At lower temperatures, the integrand in the
summation of Eq. (4) is not sufficiently divergent, and a
crossover to 3D behavior occurs, where rc vanishes at the
Neel temperature T=TN. The susceptibility would have
a weak nonanalyticity at TN, and would deviate from the
2D behavior for T ( TN. These conclusions agree with
those arrived at by renormalization-group analysis. We
have also extended the theory to take into account the
eA'ects of frustrating antiferromagnetic next-nearest-
neighbor interactions.
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