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Optical Nonlinearity Induced by Giant Dipole Moment of Wannier Excitons
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A new mechanism for enhancing optical nonlinearities in quantum well structures, subject to an elec-
tric field normal to the layers, is investigated. It is found that large nonlinearities are induced by virtual
transitions of Wannier excitons with "giant dipole moments. " In contrast to other mechanisms, this
enhancement mechanism is independent of correlations between excitons, for any order of nonlinearities.
This fact results in a resonant enhancement at half the excitonic energy, and an ultrafast response, even
faster than other virtual-process-induced mechanisms.

PACS numbers: 71.35.+z, 42.65.Bp, 78.65.—s

The recent advance of the physics of semiconductor
superlattices and quantum well structures (QWS's) ' has
revealed the possibility of the enhancement of optical
nonlinearities in these systems over those in bulk crys-
tals. 2 The purpose of this Letter is to propose a new

mechanism for the enhancement of optical nonlinearities
due to interband virtua! transitions.

To achieve fast response, one has to use virtual excita-
tions (i.e., the photon energy should be less than the ab-
sorption edge), rather than real excitations for which
very large nonlinearities can be obtained at the expense
of speed of the response time ( & 1 ns). The dominant
mechanism of optical nonlinearities due to virtual pro-
cesses in usual QWS's is the optical (or ac) Stark effect,
which is due to many-body correlations between virtual
excitations. To obtain larger nonlinearities, one should
utilize some "modified" QWS's for which some addi
tional effects for enhancement can be expected. A possi-
ble candidate is biased QWS's, i.e., QWS's in a static
electric field, Fb;„,normal to the layers.

Biased QWS's have been investigated in connection
with the quantum confined Stark effect, which can be
represented as a strong dependence of the linear suscep-
tibility, X ', on Fb;„. To consider nonlinear responses,
we focus on the effects of excitons, since optical proper-
ties of semiconductors near the band edge are mostly
determined by excitons. Then, most characteristic of the
biased QWS's is the very large static dipole moment of
excitons, which is hardly obtainable in bulk crystals.
This field-induced static dipole moment may be called
"the giant dipole moment" (GDM) in the sense that, as
explained below, the GDM is much larger than a possi-
ble static dipole moment of any of the usual excitations
in inorganic semiconductors.

The virtual charge-induced optical nonlinearity
(VCON), found by Yamanishi and by Chemla, Miller,
and Schmitt-Rink, can be viewed as a result of the
GDM of excitons. That is, the GDM of virtually excited
excitons gives rise to static polarization, which is second
order in the light field. In my notation of the nth-order
nonlinear susceptibility X ", this nonlinearity is repre-
sented by Xt l(0;ro, —co). Furthermore, this static polar-

ization creates a depolarization field, Fd~~, against Fb;„.
Then, excitons feel Fb,»+Fdpl, instead of just Fb;„.This
results in changes of both the energy and the oscillator
strength of the excitons, which cause changes of the
dielectric function. This nonlinearity is represented by

Note that excitons could not affect themselves if
there were no many-body correlations between them.
This simply means an absence of self-energy for nonin-
teracting particles. In the case of VCON, it can be
shown that excitons themselves "feel" Fd~~ through the
dipole-dipole interaction between GDM's of excitons.
Thus, for n ~ 3, VCON, as well as the optical Stark
effect and any other enhancement mechanisms, relies
upon correlations between excitons, although VCON for
n =2 is independent of the correlations.

In this Letter I propose a new mechanism for the
enhancement of X ",which is independent of any corre
lations between excitions, for any n. This mechanism
may be called "the direct GDM effect, " or simply "the
GDM effect, " since this enhancement can be understood
as a direct result of the GDM of excitons, as shown
below. For Zt2l and Xt 1, the direct GDM causes reso-
nant enhancement both at E,„(theexcitonic energy) and
at E,„/2, whereas both VCON and the optical Stark
effect cause enhancement near E,„only. The enhance-
ment at E,„/2is important for practical applications, be-
cause the QWS is essentially transparent (i.e., linear ab-
sorption is absent) for this photon energy, and we can
fully utilize large Z " simply by avoiding the peak of the
corresponding nonlinear absorption. (Note that at a
practical intensity of light of, say, a laser diode, the non-
linear absorption is much smaller than the linear one. )
By contrast, linear absorption would occur at E,„,when
the optical pulse is so short that the energy spectrum is
broad and extends to the absorption edge, ' and/or when
the absorption spectrum has a long tail due to, e.g.,
nonuniformity of Fb;» in a multiple QWS (MQWS).
Furthermore, in this case the response of VCON and the
optical Stark effect becomes slow as a result of lifetime
limitations, because real excitations occur. ' On the oth-
er hand, the direct GDM is basically free from lifetime
limitations even in the above case, because it does not
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rely on correlations between excitons, and thus is basical-
ly independent of (low density) real populations. Also,
the real excitation itself can be suppressed by the use of
a photon energy near E,„/2. Thus, the response of the
direct GDM is faster than the other two mechanisms.
Details on the above points will be given elsewhere.

First of all, let us define the GDM of excitons. The
electric dipole moment of an excitonic state I ex) can be
written as the sum of two terms: (ex IP, Iex) =el«a
+el,„„.Here, P, denotes the total electric polarization
operator, e is the unit charge, el«11 represents the polar-
ization due to the cell-periodic parts, and el,

„„
is the

GDM of the exciton. They are defined by

I„i!=—„„dpp(IQ (p) I 114,(p) I )

I,» — d r, d rq (rq —r, ) I y,„,(r„rq)I, (2)

where u, (u, , ) is the cell-periodic part of the electron
(hole), v is the volume of a unit cell, p represents the po-
sition vector within a unit cell, r, (rt, ) denotes the posi-
tion of the electron (hole), and y, „„

is the excitonic en-

velope function. For usual excitonic states 1,„„=0since

y,„,is highly symmetric, and excitonic dipole moments,
if any, are provided solely by the cell term 1„11.Because
of the lattice periodicity, the magnitude of l„llis always
less than the lattice constant a. On the other hand, for
biased QWS's y, „„

is "deformed" (because of the bias
field), resulting in a finite l,„„ofthe order of the exciton-
ic Bohr radius aa, which dominates the above term since

l,„,-aa (-120 A for GaAs) »a(-5 A) & l«n.

It should be noted that 1,„,is basically independent of
the component materials of the system since 1,„,depends
on neither u, nor u, Therefore, 1,„„(andI ) can be
finite even for QWS's based on centrosymmetric crystals
for which l«ii =X =0.

According to nonlinear-response theories, " ' the mi-
croscopic expression for I ", in electric dipole approxi-
mation, contains a product of matrix elements of a form

&g I Pi I ml)&m| I Pi 1
m 2)(m21Pi I m3) ' ' ' &m. I Pi I g),

where I g) stands for the ground state of the system, and
the

I
m;)'s are many-body excited states. We consider

the excitonic contribution to Xt"i in direct-gap semicon-
ductors. By the selection rule, single P, can change the
number of excitons by +. 1 or 0. Then, there exist terms
whose Im;)'s are all single-exciton states, I ex;). This
means that no exciton-exciton correlation is involved
in these terms. The magnitude of the product
(gIP, I ex|)(ex„IP, Ig) is determined by the oscillator
strength f. We focus on n —

1 matrix elements of the
form (ex; IP, Iexj). As discussed above, the magnitude
of its diagonal elements is el„li for the usual excitons,
whereas it is el,

„„
for excitons with GDM. Thus, the

contribution of the above terms to X ", if any, is propor-

tional to fl,",ji' for the usual systems, whereas it is pro-
portional to fl,"„„'for the excitonic system with GDM,
resulting in very large values of X " . This is the direct
GDM term.

For n ) 3, there are other terms for which some
Im, )'s are states of two or more excitons Iexiex2. . .).
These terms give rise to nonlinearities only when the

I ex| ex2. . . ) are deviates from the simple product of
single-exciton states. ' [By contrast, the GDM effect
utilizes the anomalous property (i.e., the GDM) of the
single-exciton states. ] The deviation is caused by various
correlations between excitons, '3 e.g. , di33ole-dipole in-

teraction in the case of VCON. The X " with n ) 3 is
the sum of all such correlation-related contributions (i.e.,
VCON and the optical Stark effect, etc. ) and the direct
GDM contribution.

Although the difference between the direct GDM and
the other mechanisms is obvious for n ~ 3 from the
above argument, care is needed for n=2 because the
above definition of the direct GDM terms includes

(0;co, —co) due to VCON. Thus, for n=2, what is
newly found is the enhancement of Zt (2co;co, co) shown
below. In particular, the enhancement of X at E,„/2
can be shown to come from the nonlinear interaction of
GDM with the light field, which was disregarded in pre-
vious work. This interaction causes a modulation of
the energy of virtual excitons by the light field, which re-
sults in optical nonlinearities. It can be shown that all
the direct GDM terms for n & 3 come from this interac-
tion, although a part of the contribution to X (2co;co, co)
at E,

„
is independent of this interaction. Thus, in a

slightly narrower sense, the direct GDM mechanism is
the effect of this interaction.

Let us calculate Z(", both for bound and unbound ex-
citons, of the GaAs/A1GaAs MQWS under Fb;„normal
to the layers, along the z direction. Barriers are assumed
to be sufficiently high and thick that each well can be
treated separately. The excitonic envelope function y,„,
is assumed to be of the form

y,„„(r„rt,) =G (Rii) W(rii, z„zt,),
where Rii and rii are the center-of-mass and relative coor-
dinates, respectively, of an electron-hole pair for two-
dimensional motion in the x-y plane. For bound exci-
tons, ' G may be written as

GRo(Rp) =(2/x( ) ' exp( —
I Rg —RP I/g),

where RI' denotes the position of a bound center (say, a
QW imperfection), and ( is the localization length. For
unbound excitons, G is given by a plane wave. As for 8',
we use the variational form' which is described by the
(lowest) subband envelope functions, p, (for electrons)
and pt, (for holes), and the 1S-like function with two
variational parameters a and P, which correspond to the
inverse of the anisotropic excitonic Bohr radius. With
the above envelope function, 1,

„„
is along the z direction,
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(4)

I shall now discuss possible corrections to the above re-
sults. We have calculated the contribution to Z~" only
from the IS heavy-hole exciton composed of the lowest
subbands. Although there must be other contributions
such as that from ionized excitons, one expects that the
former is dominant near the (lowest) excitonic resonance
in the present system, since in QWS's the IS heavy-hole
excitonic resonance peak is very sharp and well separated
from the other contributions. ' I have assumed low tem-
perature. Since in QWS's the excitonic peak is known to
be stable even at the room temperature, ' for which the
full width I is several millielectronvolts, one expects the
calculation to remain valid as long as 6)1/2. The max-
imum values of iX"

i would be obtained at

ikey

=1/2.
The anisotropy in R can modify the numerical factors in

the relations between different tensor components, such
as 2 in X~„=2k,~,). The local field correction may slight-

ly increase the magnitude of I " . Despite our taking all

these corrections into account, however, the estimated
order of magnitude of i Z "

i would remain unchanged.
Note that the above MQWS is not the optimized one.

As for L, and Fb;„,for example, larger L, or Fb;„would
result in larger l,„,and smaller jl,p i /(L, +Le) in Eq.
(4). Thus, optimum values should exist. Furthermore,
modified QWS's, such as the graded-gap QWS, s can
lead to larger Z " . These optimizations should be a fu-
ture problem. I also note that the GDM effects can be
realized in any quantum microheterostructures, such as
quantum lines or boxes, of any (direct-gap) semiconduc-
tors or insulators. And also, the polarization of the en-
velope function can be supplied by other means, say, by a
built-in potential or by the gradual change of the compo-
sition of a type-II-staggered superlattice with barrier
layers inserted.

Let us compare the present mechanism, for n =2, with
the dc-electric-field-induced second-harmonic generation
for bulk crystals (or gases), 's which is the enhancement
of X, observed for some bulk materials, by the applica-
tion of the dc bias field. I first note that the absence of
that enhancement was confirmed for GaAs bulk crys-
tals. ' Let us discuss the advantage of the present mech-
anism from a more general point of view. For usual
(non-small-gap) semiconductors, the dc second-harmonic
generation is due to polarization of immobile electrons. '

R;—= (1/U) d'pp;u, *(p)u,, (p).~ cell

In Eq. (4), L, (Le) is the well (barrier) thickness, Eg
(=E,„)denotes the band-gap energy of the well, 6 is
the Kronecker delta, ==1 for unbound excitons while
:-=Sn( /o for bound excitons, with cr

' being the
areal number density of bound centers, and I,p—:f dz p, (z)pg(z) is the overlap integral of a free
electron-hole pair. On the right-hand side of Eq. (4), the
second factor comes from the sum over excitonic states
(2 is the spin degeneracy), the third factor and the R's
are from the oscillator strength, and the 8's are due to
the direction of I,„„.

For the bulk GaAs crystal, 1;lk is nonzero only if the
(2)

i',j ', k' are all different, because of the symmetries of the
zinc-blende structure, ' where i',j',k' (=1,2, 3) refer to
the crystallographic axes (which do not necessarily agree
with the QW axes). This is not the case for the present
system. Disregarding the anisotropy of R, i.e., setting
R;—=R, independent of i, we find that the nonvanishing
components of X;~i/1 are as follows:

g (2) 2g (2) 2g
(2

2g (2), 2~ (2),
gZZ ZZZ gg 2 /ZAN Zgg o

where g and ri' are x or y. For L, 120 A, Le=SO%,
and Fb;„=100kV/cm, we obtain Z„„=—Sx10 esu,
by using the values' iRi =(3 A), :-=I, a=1.2/
aa =(100 A) ', il, p i

=0.5, l,„„=0.5L„I, =0.7,
Ez=1.5 eV, and A=i meV. This value of iZ i

is
about 10 times larger than the observed value' of
(7+ 2) x 10 ' esu for i Zgj i of bulk GaAs.

In the case of the two-photon resonance (i.e.,
2Aco=E,„—A), the formula for X 2i is obtained by re-
placement of the factor in the square brackets in Eq. (4)
by 4(R;*Rgb', +R;*R 8q, ). The nonvanishing com-
ponents are then X;~„=2Z;~„)=21,t2„i= 16x10 6 esu,
where i =x,y, z. This value is about 20, 400, and 5000
times larger than those for bulk GaAs, LiNb03, and po-
tassium dihydrogen phosphate crystals, ' respectively.

Similar calculations can be made for higher n Note.
that the factor of enhancement is larger for higher n be-
cause X" ~l,"„„'.For n=3, X can be shown to be
10-10 times greater than the value for bulk crystals,
both at E,„andat E,„/2.

and the z component is given by

,=(I/I, )~ dz, q dzl e ' " (2Piz, —
zg i+1) i y, (z, ) i ill (zI ) i (zp,

—z, ), (3)

where I, has aPPeared from the normalization of 8', and is given by our dropping the factors 1/I, and z&
—z, in this

equation.
For the second-harmonic generation, resonantly large values of Z~2i [=X~2i(2';co, m)] are obtained when the photon

energy (either hco or 2hco) is close to the excitonic energy, E,„.The calculated result for X~ i, slightly below the one-
photon resonance (i.e., hco =E,„—A, 0 & 5«E,„),is given by

where i,j,k (=x,y, z) denote the tensor indices, and the
R s are the transition matrix elements:

615



VOLUME 61, NUMBER 5 PHYSICAL REVIEW LETTERS 1 AUGUs~ 1988

Then, only a small enhancement is expected for noncen-
trosymmetric crystals since electrons are already polar-
ized before the application of Fb;„,while the relative in-

crease of I ) is drastic for centrosymmetric crystals
since X( (no bias)=0. We should note that the absolute
magnitude of the resulting dipole moment for each elec-
tron is still less than the lattice constant (because of the
lattice periodicity), which is much smaller than GDM
obtained in QWS's. Furthermore, QWS's are also need-
ed in order to utilize excitons, since excitons are unstable
in bulk crystals. The advantages of our using exci-
tons' are that (a) we can utilize strong resonance since
the excitonic state is localized in energy, in contrast to
band electrons, and (b) an excitonic state has much
larger oscillator strength than a free electron-hole pair.
Therefore, we can state quite generally that X( )(bulk)
~X(2)(biased bulk) «X( (biased QWS).

Both the direct GDM mechanism and VCON are
closely related to large nonlinearities observed in some
organic materials, for which the nonlinearities are con-
sidered to be due to the "GDM" of excited states of the
molecules. For organic materials, excitons are usually
localized, say, as Frenkel excitons, so that l,„„(ifany)
cannnot exceed l„~~by much. However, the GDM can
be provided by the asymmetry of the molecular orbitals,
which correspond to l„ll,since the molecular orbitals can
become very long as compared with the lattice constant
of inorganic semiconductors. In this sense, each quan-
tum well corresponds to a two-dimensional array of long
molecules. A Wannier exciton with GDM corresponds
to a Frenkel exciton of the long asymmetric (polarized)
molecules. The large optical nonlinearities of organic
materials, especially those of layered ones, may be un-

derstood more clearly with the concepts of VCON and
the direct GDM mechanism.

Finally, I comment on the experimental situation. To
my knowledge, no experiments corresponding to the
present prediction have yet been performed. Presum-
ably, the easiest way to observe the GDM effect is to
measure X( ) or X(3 of a GaAs/A1GaAs MQWS, both
with and without Fb;„,near the two-photon resonance
(to avoid VCON, the optical Stark effect, and linear ab-
sorption), at low temperatures.

In conclusion, I have found a new excitonic nonlinear
mechanism, the direct GDM effect, which provides the
possibility of QWS's (or quantum lines or boxes) as new

nonlinear materials with (1) large X " (~fl,"„,'), (2) ul-

trafast response (& 1 ps), and (3) transparency for light
(especially, at E,„/2). These properties suggest wide po-
tential applications.
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