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The behavior of the two-particle spectral function, S(q, co), is examined in the hydrodynamic regime,
at the mobility edge in a model for the integer quantized Hall eA'ect. Results are presented from numer-

ical diagonalization of the Hamiltonian for finite systems. For q /co small, S(q, co) has a conventional,

diffusive form. For q /co large, the novel dependence S(q, co) —co "/
q

2+" is obtained, with )i 0.38
W 0 04

PACS numbers: 71.50.+t, 71.55.Jv, 72.20.My

Scaling behavior near a mobility edge —viewed as a
critical point —is widely believed to be especially simple,
at least in the absence of magnetic effects and interac-
tions. This simplicity is a consequence of the one-
parameter scaling assumption, ' that a length-dependent
dimensionless conductance is the only quantity necessary
to characterize behavior at a given length scale. As a re-
sult there is only one independent critical exponent say
the localization-length exponent v, which describes the
approach to the mobility edge and from which other ex-
ponents, for example, the one for conductivity, can be
determined. Correspondingly, at the mobility edge itself,
the requirement of homogeneity under combined length
and energy scale transformations determines the scaling
form of eigenfunction correlations completely. ' One im-
plication is that the exponent ri, governing correlations at
the mobility edge, should be given exactly in d dimen-
sions by rl 2 —d.

Observation of the integer quantized Hall effect indi-

s(rE, ru) =(z.,&B(E—m/2 E,)6(E+m/2 Ez)y-, —

where )l/, (r) and yp(r) are eigenfunctions with energies
E, and E/r and the angular brackets denote an average
over an ensemble of disordered systems. It, or its
Fourier transform S(q;E, co), determines the system's
linear response to time- and space-dependent variations
of the chemical potential. The connection between the
spectral function and the retarded-advanced two-particle
Green's function, and a Ward identity for the latter, re-
strict the form for small q, co to be

&(q;E, co) =p(E) h (q, co)/rr [co'+ h '(q, co) ]

with h(q=0, co) =0, where p(E) is the density of states
in energy, per unit d-dimensional volume.

If a wave packet, constructed as a superposition of
eigenstates close in energy to E, spreads diffusively for
long times and for large distances with diffusion constant
D, then h(q, co) =ADq for small q, co. More generally,
if E=E„ the mobility edge energy, then h(q, co) should
satisfy a homogeneity requirement. In a system of linear

cates a breakdown of one-parameter scaling. Pruisken
and co-workers have shown how this happens within an
effective field theory: The Hall conductance appears as a
second coupling constant, in addition to the dissipative
conductance, and two-parameter scaling emerges.

We describe in this Letter a distinct and striking as-

pect of the failure of one-parameter scaling at the mobil-

ity edge in a model for the integer quantum Hall effect.
Eigenfunction correlations do not have a conventional,
diffusive form: Although homogeneous, they are charac-
terized by a nontrivial value of ri. Equivalently, the
diffusion constant (proportional to the dissipative con-
ductance) has a novel wave-vector and frequency depen-
dence: Eq. (2).

Our main results are from numerical diagonalization
of the model Hamiltonian. Before describing these cal-
culations, we introduce the quantity studied, the two-

particle spectral function, and summarize scaling argu-
ments, our conclusions, and previous analytical work.

The two-particle spectral function is defined by

(0)y '(r)(ip(r)qir(0)).

t

size L, one expects, over lengths much greater than the
elastic scattering length, lefsst g that L itself sets the unit
of length. Correspondingly, over energies co much less
than the bandwidth, the mean level spacing, which is

proportional to L, sets the energy scale. Invariance
under the scale change L bL implies'

h(q, co) =bdh(b 'q, b dco) = h, q f(qd/co)—

The new results presented in this paper are that, for
electrons in the lowest Landau level with disorder,

f(q /co) has the form

]
D, if q /co & ep(E, ),

(2)
[coep(E, )/q ] "/ D, if q /co & ep(E, ),

q

for q, co small. Estimated parameter values are given
after Eq. (5). [Presumably there is a crossover region
between the two litniting forms of Eq. (2), but apparent-
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ly it is rather narrow. ]
Thus an (2)-independent characteristic length, Lo

=lcocp(E, )] 'i, is generated, which can be interpreted
as the size of a system having a mean level spacing at the
mobility edge of order co. Long-wavelength eigenfunc-
tion correlations, ( ' & q & Lo ', where g is the localiza-
tion length, have the conventional, diffusive form, but at
shorter wavelengths, Lo ' & q & I,]„'(,„correlations have
the novel behavior S(q;E„Q))qKco "i

q
Our numerical calculations were motivated by recent

analytical results. First, a rigorous inequality for
eigenfunction correlations in a single Landau level ex-
cludes conventional, diff'usive behavior for S(q, o)), but is
consistent with the modified form we propose. (The
correlation inequality would be satisfied with 21=0 if
v& —,', but this range for v is ruled out by finite-size
scaling calculations and the Harris-Mott criterion. )

Second, perturbative calculations of quantum interfer-
ence effects in high Landau levels, analogous to weak-
localization calculations in small magnetic field, reveal
that the leading correction to diffusive behavior is a
reduction in the diffusion constant at finite wave vector.
This correction arises at first order in perturbation
theory and therefore dominates over the universal reduc-
tion in dissipative conductivity found at second order.
We interpret this result to indicate a crossover with in-
creasing length scale from diffusive (ran=0) to critical
(ri & 0) correlations.

Our numerical results are for electrons in the lowest
Landau level, moving in a Gaussian white-noise poten-
tial. We start from the Hamiltonian for noninteracting
particles of mass m and charge —

~
e

~ moving in the x-y
plane with a uniform, perpendicular magnetic field of
strength 8 and a potential V(x,y):

H =(l ~,/2) [-l2a'/ax'+(-l, a/ay+x/I, ) ]+V(x,y) =Ho+ V(x,y), (3)
where l, =h/~e ~8 and 0), =e8/m. We treat a square
system of side L and apply periodic boundary conditions
in both directions, which requires L =2zNl, , N integer.
Eigenstates of Ho from the lowest Landau level are then
products of 8 functions, s which are accurately approxi-
mated for the system sizes we study (128 ~ N ~ 1024)
by

(2N) "4 2«m
&x,y ~m)=

L Lexp [y]— 1 mL

2l,
X+

2

for m =1,2, . . . , N, with m+N= m, where squ—are
brackets indicate lengths measured modulo L, so that

L/2~ [x+—mL/N] &L/2 and 0& [y] &L. In the
strong-field limit, scattering between Landau levels may
be neglected; the projection of Eq. (3) onto the lowest
level is, after subtraction of zero-point energy,

N

~
m) &m

~
V(x,y) )

m') &m' ).
m, m I

We take the potential, V(x,y), to be essentially Gauss-

ian white noise with zero mean and covariance

&V(x,y) V(x',y')) =v l, b(x —x')B(y —y').

More precisely, we take the Fourier components of
V(x,y) with wave vectors (k„k~) for which ~k„~ or
~k~ ~

) 6.3l, ' are omitted. Their contributions to the
matrix elements of S are negligible, since the basis
states are smooth functions.

We calculate S(q;E„co) by numerically diagonalizing
/t', assembling the eigenvectors and energies to form the
spectral function, averaging over different realizations of
the potential and, finally, extrapolating from a sequence
of system sizes to obtain the large-N, small-q, small-Q)
limit. 9 If the eigenvector of S with energy E, has ex-
pansion coefficients a, (m) in the basis [ ~ m)], let

jv 2

g,p(k, i) =N g a, (m)ap» (m+l) e ""
m 1

with k, l integer. Then

S(q;Eer) =(2el, lq ) , 'e * (Z.,ek(E —re/2 —E.)6(E+re/2 —Ee)Q.e(k, l)), (4)

where q =2m(k +l2)/Nl, 2.

This expression is unsuitable for numerical evaluation because of the two 8 functions. One is removed by integration
on E over a narrow range around the mobility edge, and we replace the other with a sharply peaked weighting function.
Thus we assume that S(q;E,co) is independent of E over the range of energies for which the localization length in an
infinite system is much larger than the size of our system. From the work of Aoki and Ando ' we estimate this condi-
tion to be satisfied generously for the 2M eigenstates closest to E =E,—=0, if M ~ 0.35N ~ . Equation (4) may then be
replaced by

S(q;E, co) =2rcl, p (0) exp( —
q I, /2)K(q, ), (2)

with
I I

K(q, re)=(g. ew(re+E. Ee)Qe(kl) / Z, ew—(er+E—E,e)), ,
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where g,'& is the sum over the 2M states described above" and w(co+E, E—&) is chosen to be a Gaussian function
with width o of order the mean level spacing: cr =on/N, oo =0.64v.

In this way we obtain K(q, co) for 0~ k +I ~ 19 and co =no, 2 ~ n ~ 19 (k, l, n integer), where the upper limits
are chosen so that co«v and q &I, , even in the smallest systems studied. Averaging over 1000 realizations for
N =128, 200 for N =256, 50 for N =512, and 10 for N =1024 resulted in statistical uncertainties of approximately 1%
in K(q, co).

We make the extrapolations N ~ and q, co 0, with q /co fixed, simultaneously as follows. If the scaling assump-
tion, Eq. (1), is correct, then in these limits we expect

coK(q, co) = [2n'I,'p(0) ] ' [hq'f (q '/co)/col/[1+ [hq 'f (q '/co)/co] '],

which is a function only of the single variable q /co.

Each system size studied results in values for coK(q, co)
at twelve values of q =2m(k +I )/Nl, , and eighteen
values of co=nero/N, producing 140 distinct values of
q~/co. For each q /co we combine data from all system
sizes and extrapolate coK(q, co) linearly in q to q=0
and, by implication, N=~, co=0. ' This extrapolation
is illustrated in Fig. 1 for four representative q /co

values.
A preliminary examination of the extrapolated

coK(q, co), and hence S(q;O, co), shows that a form simi-

lar to Eq. (2) is appropriate. Best values of p(0), D, c,
and ri are obtained as follows. The coK(q, co) values are
divided into two sets: those for q /co &a and those for
qz/co) a. The first set is fitted with f(q /co) =D and
the second set with f(q~/co) =(coa/q ) "/D, adjusting
p(0), D, a, and g. In this way we find vl, p(0) =0.149,
hD/vl, =0.58, c=—a/p(0) =60. The exponent lies in the

range ri =0.38+ 0.04. Error estimates are problematic,
both because of statistical correlations contained in K(q,
co) and because of uncertainty over systematic effects.

The value for vl, p(0) compares well with the known,

exact result, ' J2/n =0.143. The present value of the
long-wavelength diffusion constant agrees reasonably
well with a previous calculation' from a resummed per-
turbation series in v, of hD/vi) =0.51. At critical points

in two-dimensional, statistical-mechanical systems, there
is an established relation between ti and a finite-size scal-
ing amplitude. ' If this relation also holds at a mobility
edge, tl can be found independently'6 from transfer ma-
trix calculations of the localization length' '; in fact,
such estimates are =30'/o larger than the value given
above.

A generalization of the functional form that we fitted
is obtained by allowing a second exponent, ti'~0, for

q /co &a. From this we obtain ti'=0.064, with little
change in ti. Since the zero-temperature, dc dissipative
conductivity is proportional to f(0), rl'=0 is clearly pre-
ferred.

The behavior of f(q~/co) is shown in Fig. 2. The col-
lapse of the data onto a single curve is strong support for
the scaling assumption, Eq. (1). It is clear that eigen-
function correlations near the mobility edge, and on
length scales between the magnetic length and the lo-
calization length, cannot be characterized solely by a
diffusion constant; instead they are well represented by
Eq. (2).

Our results give no direct insight into the reason for
the divergence of the localization length at the Landau
band center. However, we feel that a complete theory of
localization in the integer quantum Hall regime should
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FIG. l. Illustration of extrapolation of K(q, co) to /V=~,
q =co=0 with q /co fixed. For clarity, only a representative
selection of data points are shown. Lines are labeled with

values of (k +l )/n.

FIG. 2. Fit of extrapolated data (points with estimated er-
rors) by Eq. (2) (line), for parameter values given in text. A
representative selection of the 140 data points is shown. The
large errors near log&o(vl, q /co) =0.2 reflect the intrinsic diffi-

culty in our obtaining f(q /co) from S(q, co) near the maxi-
mum in S(q, co). Units off are vl, /h.
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include predictions of the scaling form Eq. (2), for eigen-
function correlations on scales shorter than the localiza-
tion length. The behavior we find for small q /co is com-
patible with the field theory proposed by Pruisken and
co-workers; the anomalous correlations at large q /t0

may have an instanton interpretation in that context.
A direct experimental test of the scaling form is likely

to be difficult because the obvious measurement, conduc-
tivity, probes q =0. An indirect signature should appear
in the temperature dependence of the inelastic scattering
rate, and hence the peak values of the dissipative conduc-
tivity between Hall plateaus, because the spatial overlap
of eigenfunctions close in energy is large:

for E„Ep near E,. In theoretical terms, the consequence
of the eigenfunction correlations we find is that a wave

packet spreads with (diameter) ~ time, because the scal-
ing variable is q /c0, but the wave packet never ap-
proaches the Gaussian asymptotic form reached by solu-
tions to the diffusion equation. Clearly, the nonzero
value of ri may be a consequence of fractal structure in

eigenfunctions. '

It is natural to ask whether similar correlations are
likely to occur near the mobility edge in other systems.
An obvious candidate is the localization transition in two
dimensions that occurs when spin-orbit scattering is

strong.
In summary, we have shown that eigenfunction corre-

lations have novel scaling behavior near the mobility
edge in a model for the integer quantum Hall effect.

We wish to thank Paolo Carra for previous collabora-
tions and many discussions, from which the present work
originated.
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