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The zero-temperature entropy of glasses is usually calculated from the specific heat measured during
heating. %e show that this only gives an upper bound for the entropy; measuring the specific heat dur-
ing cooling would provide a lower bound. Furthermore, in a computer simulation, measuring the distri-
bution of calorimetrically measured entropies on repeated fast coolings provides information about the
internal relaxation mechanisms of the glass. Three diflerent Monte Carlo systems illustrate our results:
a model orientational glass, a single two-level system, and a small Ising spin-glass.

PACS numbers: 6S.SO.+I, OS.70.Ln, 61.40.+b

An experimentalist who wishes to know the entropy of
a system uses the thermodynamic definition of tempera-
ture, T '=dS/dE, to measure what we will call the
"thermodynamic" entropy,

S= —Trp lnp, (2)

where p is the density matrix. In glasses, the experimen-
tal, thermodynamic entropy at zero temperature is on
the order of one per molecular unit. ' This is usually
equated with the statistical entropy: Miraculously,
measuring the heat flow out of a sample which is freez-
ing into a particular, definite atomic configuration gives
information about the total number of possible glassy
states.

Glasses are not in equilibrium. The material proper-
ties of a glass depend upon its entire thermal history;
only the large separation between atomic and laboratory
time scales allows thermodynamic quantities such as
temperature and specific heat to have even an approxi-
mate meaning. The first section of this paper demon-
strates that, although in equilibrium the two definitions
of entropy are equivalent, in glasses the thermodynamic
entropy can only provide upper and lower bounds to the
statistical entropy. In the laboratory, glasses are nearly
in equilibrium and the thermodynamic bounds are rather
close together. In computer simulations, the
difI'erences are more substantial and the finite size of the
simulations produces large fluctuations: On repeated
coolings one measures a distribution of zero-temperature

thermodynamic entropies. These distributions are the
topic of the second part of this paper.

Three computer simulations illustrate our results. The
first simulation demonstrates that the bounds on the en-

S =„dQ/T.
Here Q is the heat flow into the system in question, and
T is the equilibrium temperature. When a theorist talks
about entropy, he or she is usually interested in the
volume of phase space occupied by the system, and com-
putes what we will call the "statistical" entropy,
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FIG. 1. Schematic of entropy flow for cooling and heating.
The measured entropy flow between the glass and the heat
bath is represented by the solid lines. Irreversible processes in
the glass create the entropy indicated by the dashed lines.

tropy can be measured in a realistic model glass. The
second simulation is a simple two-level system in which
we can compute the entropy distribution analytically for
slow cooling rates; it demonstrates the importance of the
separation of time scales. The third simulation shows
how the sensitivity of the entropy distribution to the
thermal history may be used to extract useful informa-
tion about the dynamics of a small spin-glass.

The zero-temperature entropy of a glass might be
measured by first melting a zero-temperature crystal and
then quickly freezing it. The entropy St(TtI) of the
liquid at the melting temperature is known because the
amount of heat added to the crystal can be measured,
and the original entropy at T=O was zero, by Nernst's
theorem. The entropy of the glass S,~~ is determined by
cooling the liquid through the glass transition to some
low temperature Tt (possibly zero) while measuring the
heat flow, and with use of

t
T=T

S, i(Tt) =St(T~)+„, , (Q/T)dt,

where Q is the heat flow into the glass, and T is the tem-
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perature of the heat bath controlling the cooling. This
process is illustrated schematically in Fig. l.

Let the actual (as opposed to the measured) entropy
of the glass be Sg. The initial entropy of the entire sys-
tem is Sl(T~)+Sb„h(T~). Since the glass is not in

equilibrium, it does not have a well-defined temperature,
and we cannot compute the change in Sg calorimetrical-
ly. On the other hand, the bath is in equilibrium, and its
entropy changes by f(Q/T)dt. Now the heat bath and
glass together comprise a closed system, and the entropy
of a closed system must increase with time. Hence,

how much heat has to be added to reach the liquid state,

Sh„t(T))+ T T (Q/T)dt =S((Tsr) .

Again, the measured quantity is the change in entropy of
the heat bath, —fT=T", (Q/T)dt. Since the total entro-

py of the glass plus heat bath system must increase,

S (T ) ~ S((T ) — (Q/T)dh,

we find that

S((Tsr ) +sb.th(TM )
S,ooi(T~) ~ Sg(T~) ~ Sh„t(T~) . (4)

or

+T Tl~ Sx(Ti)+Sb,th(T~) —
q T T (Q/T)dt,

Ss(Ti) ~ S, i(Ti) . (3)
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The measurement of the entropy on cooling therefore
yields a lower bound on the actual (statistical) entropy
of the glass.

To measure the entropy on heating, Sh„t, one would
take the glass at the low temperature Ti, and measure

The measurement of the entropy on heating therefore
yields an upper bound on the actual entropy. Notice
that we have not said exactly what is meant by the "en-
tropy" of the glass, S~. That is, we have not specified
how one is to take the trace in (2). It is clear, however,
that any reasonable definition of the glassy entropy must
satisfy the bounds (4).

Our first example, Fig. 2, shows the thermodynamic
entropies measured while heating and cooling a model
orientational glass in a Monte Carlo simulation. 5 The
error bars shown represent the error in the mean of the
data; fifty runs were necessary to establish the bounds
for the fastest cooling rate and five for the slowest. Two
runs of the simulation, cooled in the same manner, have
different thermodynamic entropies because internal re-
laxations take place at different times. 6 The means of
the probability distributions p(s) of thermodynamic en-

tropies on heating and cooling give the bounds on the
statistical entropy. Furthermore, the entire distribution
is an intrinsic property of the glass and its thermal histo-

ry.
As the second example, consider the simplest possible

model of a glass, a single two-level system (TLS). A
TLS is always in one of two possible states, or "wells, "
whose energies differ by an asymmetry e. Transitions
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FIG. 2. Residual entropy as a function of cooling time.
T =0 statistical entropy (crosses) and upper and lower entropy
limits (diamonds and squares) from a Monte Carlo simulation
(Ref. 5) of a model orientational glass of elastic dipoles. The
system contained sixteen dipoles, and was cooled and heated
between 1000 and 0 K. The error bars on the upper and lower
limits were all about 0.03. The errors on the statistical entropy
were not computed. The computer time needed to get the sta-
tistical entropy grows exponentially with the system size. We
can compute the statistical entropy in this case only because
the system is small. All material properties of glasses depend
on the cooling rate, including the residual entropy.
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FIG. 3. The solid line is the distribution at T=O of the
"thermodynamic" entropy f dg/T measured in a Monte Carlo
simulation of a single two-level system. The dotted line is the
asymptotic expression for the same distribution. Inset: The
upper peak represents occasions on which the system was
trapped in the upper well.
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between the states take place by thermal activation over
a free-energy barrier of height V with attempt frequency
I 0. Since the transition rate is highly temperature
dependent, if the system is cooled at a finite, nonzero
rate the TLS will "freeze" into a nonequilibrium con-
figuration at a temperature T* when the transition rate
becomes slower than the cooling rate. Figure 3 shows
the distribution of S, i for a TLS at zero temperature,
with T(r) To/(I+Rt) Th. e significant features of the
distribution are the two peaks and the long tail on the
lower peak.

The upper peak in the distribution represents coolings
in which the system was left in the upper well. If the
probability of finding the system in the upper well and
simultaneously finding the measured thermodynamic en-
tropy to be between S and S+dS is pt(S)dS, and the
corresponding probability of finding the system in the
lower well is pi(S)dS, then near equilibrium pt(S) must
be peaked around the value (St),q

= inn—, and pi(S)
must be peaked around (Si),q —ln(1 n)—, where n is
the total probability of being in the upper well. Since
the total distribution p(S) =pi(S)+pl(S), and transi-
tions between the two states transfer energy e to and
from the surrounding heat bath, the peaks in p(S) must
be separated by Pe. As the temperature falls and transi-
tions take place with larger Pe, the peaks move apart.
Below T transitions between the wells are not frequent
enough to maintain the ever increasing equilibrium peak
spacing. At zero temperature the separation is deter-
mined by T, not T.

i and

P t(a x) exp( —x/b)

pi(a, x) h" ' ' I [I+@(1—ia),x/b]
(5)

The long tail in the entropy distribution results from
transitions that take place after the TLS falls out of
equilibrium. At T the two peaks are separated by P*e.
Each subsequent downward transition removes weight
from the high S peak, and moves it by Pe) P*t. down
the entropy scale to the low entropy side of the lower
peak, forming the tail. The rate of downward transitions
is small, but in this regime the rate of upward transitions
is infinitesimal, so the low-entropy tail is not diminished

by transitions back to the upper well.
Real glasses are always cooled much more slowly than

computer simulations. Therefore, it will be important to
understand the entropy distribution of a TLS cooled
asymptotically slowly. Following Huse and Fisher, who
discussed the zero-temperature residual energy of a TLS,
we define a dimensionless asymmetry p e/V and a di-
mensionless cooling rate b RV/I oTo. Since 8 is rough-
ly the rate of the microscopic oscillation time to the mac-
roscopic cooling time, we expect physical systems to have
b«10 '2. Figure 3 shows the zero-temperature entropy
distribution for a TLS with e/V=0. 5 and 8=0.01. The
solid line is the result of a Monte Carlo simulation, while
the dotted line is the prediction of the asymptotic
analysis. ' Letting p(cr) be the Fourier transform of
p(S), and defining a convenient temperature variable
x:—exp( —PV), for asymptotically small 8 we find

el (i,.) pi(a,z),. pt(cr, z)
lnpt(a, x)pi(a, x) f(cr)+ —„dz 1+z"+z" ' ' —z' "

$~x pt(a, z) pt(a, z)

Here I is the incomplete I function, and f(cr) depends
on the initial high-temperature distribution. Considering
that 6 =0.01 is not very small, the agreement between
the curves in Fig. 3 is remarkable. For physical cooling
rates, the agreement should be excellent.

The entropy distribution is useful as a tool for examin-
ing the dynamics of complicated nonequilibrium systems.
As the third example, we use the distribution to examine
a small (5x5) two-dimensional +J Ising spin-glass. "
Figure 4 shows the entropy distribution obtained by cool-
ing the spin-glass repeatedly from T =10J to T=O in

1000 Monte Carlo steps. The two peaks and the long
low entropy tail show that this particular spin-glass looks
like a TLS at low temperatures. The separation of the
two maxima in the distribution shows that P a=0.17.
We can also determine P and e separately, by varying
the cooling schedule. Figure 4 also shows the entropy
distribution derived by cooling the spin-glass at a con-
stant rate of 100 Monte Carlo steps per degree from high
temperature to a temperature Ti & T*. The glass was
then instantaneously quenched to T2 & T i, at which
point the cooling was resumed at the previous rate. No
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FIG. 4. The solid line is the distribution of entropies mea-
sured by cooling a 5x5 Ising spin-glass 10000 times from
T 10J to T 0 Monte Carlo steps. The average thermo-
dynamic entropy is 0.033 per spin; the statistical entropy
(determined by our counting zero-temperature states) is 0.072
per spin, and the average entropy measured on heating (not
shown) is 0.095 per spin, so the thermodynamic entropy does
indeed bound the statistical entropy. The dotted line is the dis-
tribution for the same system, but quenched from T 0.7J to
T 0.4J. The hole in the distribution is determined by the
eff'ective TLS asymmetry t. and the freezing temperature T*.
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transitions from the upper state occurred, therefore, be-
tween Tl and T2, so there is no weight in the entropy tail
between (Sl &,q

—P2e and (S I &,q
—Pie. The hole is of

width (P2 —Pi)e, which determines e, and hence P*. For
the example in Fig. 4, Ti =0.7J, Ti =0.4J, the hole in

the distribution is of width =0.1, implying that
e=0.09, and that T =0.5J. Because this system is

small, we have actually found the states of the spin-glass
corresponding to the wells of the TLS, and have
confirmed that the measurements of e and T are
correct. Notice that, even if the upper peak in the distri-
bution were completely absent at T=O, we could still
determine e by this method, although we would have to
go to greater lengths to find p .

Two problems (at least) chronically plague computer
simulations of glasses: large fluctuations due to the finite
size of the system, and the difficulty of reaching equilib-
rium. The entropy distribution is an easily measurable
quantity that makes an asset of both of these difficulties.
Furthermore, it depends on the entire history of the
glass, and at least in a simple model is analytically cal-
culable in the limit of slow cooling rates.
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This model was chosen for its simplicity and computational
speed. The spins sit on a square lattice with periodic boundary
conditions. The Hamiltonian is 0 —g&;t&J;JS;St, where the
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