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Crossover from Rouse to Reptation Dynamics: A Molecular-Dynamics Simulation
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We present the results of an extensive molecular-dynamics simulation of a dense polymer system. We
show for the first time that simulations are able to cover the whole regime from pure Rouse dynamics to
reptation dynamics and give strong evidence of the latter. The mean square displacements clearly exhib-
it a t ' power law. A mode analysis shows that the high-frequency modes follow the Rouse relaxation
while those at lower frequency display reptation relaxation. Both quantities give the same entanglement
length.

PACS numbers: 61.25.Hq, 36.20.Ey, 61.20.3a

The physics of polymeric liquids is one of the fascinat-
ing and challenging problems of modern condensed-
matter physics. ' Because of the topological interactions,
melts of linear polymers display a rich and unusual
viscoelastic behavior. Though experiments have been
very important in elucidating many of the properties of
these complex systems, they are unable to investigate the
microscopic origin of this behavior directly. For this
reason, computer simulations of the motion of highly en-
tangled polymers can play an important role in under-
standing these complex systems. Here we present results
of the first large-scale molecular-dynamics simulation of
a melt of linear polymers which covers the range from
the short-chain, nonentangled regime (Rouse) to the
highly entangled regime (reptation).

The dynamics of polymeric melts is typically discussed
in terms of the Rouse and reptation model. For short
chains, the surrounding monomers cause a stochastic
motion of an individual monomer. This motion is con-
strained by the connections of the monomer along the
chain, leading to standard Rouse behavior. Although
there are some questions about the short-time behavior,
this theory describes the systems very well. The long-
est relaxation time ztv-N, where N is the number of
bonds, while the diffusion constant D-N and viscosi-

ty tl-N. Experimentally, for N & N„ the entanglement
length, this dependence changes to D-N and ri

-N34. s This is usually explained by the reptation mod-
el of Edwards and de Gennes. ' Physically, reptation
means that chains on a length scale larger than
dT-N) i (the diameter of a chain of N, bonds) move

predominantly along their own contour. The chain has a
Rouse-type relaxation up to a time r, -N, , after which
one has a Rouse relaxation along the coarse-grained path
of a chain with bonds, consisting of N, monomers each.
Since this is a one-dimensional diffusion along a ran-
dom-walk path, the chain needs a time z„„-(NIN, )N
to leave the original tube. Consequently, one gets
g —N . '' This model has been very successful in the
description of qualitative aspects of the dynamics of

melts. Though the ri-N behavior was interpreted as a
short-chain effect, it persists for chains of more than
1000 N, . ' ' Microscopically, this Ansatz leads to a
power-law regime in the mean square displacement gi (t )
of the monomers of the form gi-t ii2, t & z, ; gi-t ii4

t & riv, gi-t 'I, t & z„„.' Finally for t & z„t„gi-t.
The t 'i behavior is a direct consequence of the reptation
concept. However, until now it has not been seen direct-
ly!3 7'4'5 Consequently the validity of the concept has
been questioned and alternative approaches have been
discussed. '

It is clear that computer simulations should be capable
of yielding insight into the microscopic mechanism of the
dynamics of such systems. ' However, up to now all at-
tempts have failed to see the expected signature of repta-
tion in gi(t). ' What became evident from these
studies was that it would be extremely difficult to see the
anticipated effects and that the static screening length
certainly is much smaller than the entanglement length.
One recent investigation, in particular, of long chains on
the cubic lattice (N=800) (Ref. 15) cast considerable
doubt on the general validity of the reptation concept.
However, Monte Carlo simulations on a lattice have one
serious disadvantage. " In order to have a high accep-
tance of the moves, the density p has to be relatively
small (p=0.5 in Ref. 15). Thus the chains have to be
very long in order to mimic a melt of long polymers. An
alternative approach is to do continuum simulations of
off-lattice chains at a higher density. Here we present
such a calculation using a molecular-dynamics method
where the monomers are very weakly coupled to a fric-
tional background and to a heat bath. ' '

The integrated equations of motion are

The interaction potential U;t is purely repulsive (Len-
nard-Jones) between all monomers with a strong attrac-
tive interaction between neighbors along the chain' and
W; is a Gaussian white-noise source. The time unit is
z=o(m/e)'i in standard Lennard-Jones units in which
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a is the unit of length, m is the mass of a monomer, and
e is the unit of energy. Here we choose I =0.5z ' and
set ~=m =a= 1. Besides I the other parameters were
the same as in Ref. 19. For short times (t« I ') the
motion of a monomer is ballisticlike in a standard molec-
ular dynamics, while for long times the motion is
diffusive. For a single chain this reproduces Rouse-type
dynamics. Simulations were carried out for a density
per =0.85, a temperature T/e=l. Q, and a time step
ht =0.006z. We monitored the maximum separation be-
tween monomers along the chain to assure that no bond
cuts occurred. With rl and r1v being the positions of the
two ends of the chain, we found that

(R (N)) =((r1 —r/) ) =(l )c (2)

with average bond length (l2) =0.940, and a persistence

length l~= jc =1.34. Systems studied had M chains
with N monomers per chain, for M/N= —'„', —'„', —,", , —,", ,

,'~, and —,",, . After equilibration we ran the systems for

up to 15x10 time steps. These times allowed all chains
to move at least 2(R)). Figure 1 shows a plot of (R )
and the mean squared radius of gyration (RP). Thus,
our chains consist of up to more than 100 persistence
lengths and should be able to cover the crossover to the
entangled regime.

The importance of strong fluctuations of the outer
monomers was already seen for chains in a straight
tube. ' To confine ourselves to the "most entangled
monomers" we calculated the mean square displace-
ments of the five innermost monomers as a function of
time. A detailed description of the properties of the
chains, especially with respect to the position of the
monomers along the chain, is in preparation. 22 The
function

D(N) =,'5 DRo„se (N )N, jN, (4)

where DR,„„is the expected diffusion constant due to the
Rouse model, we find N, = 110 for the largest chain of
N =150. However, it is well known that the real entan-
glement length cannot be determined accurately from
the diffusion constant. For homopolymeric melts, the
bare diffusion constant typically gives values for N,
which are about twice as large as the N, from the pla-
teau modulus of the viscosity. Also, we are still in

the crossover regime where the slope for D(N) is some-
what steeper than the expected N 2. Therefore, we be-
lieve that this estimation of N, is too large, as shown
below where we find that N, is actually smaller than
about 50 monomers for our model.

Much more insight into the behavior of the chains is
given by the direct analysis of g1(t ). Figure 2 shows
that for short chains no deviation from Rouse behavior is

seen (to study early time deviations from Rouse behav-
ior we shall analyze shorter times ). For N~50 at a
time z, = 1700z and a distance d = 21, we find strong

overall diffusion of the whole system, this is subtracted
from the motion of the chains. D was then calculated
from the extrapolation of the motion of the center of
mass of the chains. Figure 2 gives our results for gl(t)
for chains of length N) 30 and D for N=10 to 150.
The plot of D shows that the data deviate from Rouse
behavior (6DN-const) for N) 30. As has been seen
experimentally, we even find a stronger than N de-
crease of D, which is known to be a crossover effect due
to the strongly enhanced mobility of the chain ends. Us-
ing

N/2+ 2

gl(t) = —,
' ([r;(t) —r;(0)]')

i N2 —2
(3)

g, (tj
)
6DN

was evaluated typically out to about —,
' of the total run

time, averaging over all chains and at least 500 starting
states. Since the introduced random force causes an
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FIG. 2. Mean square displacement g~(t ) vs t/c Inset:.
DiAusion constant 6DN vs N. D was obtained from the
dift'usion, 6D = lim ([r, (t) —r, (0)] ), of the entire chainf~ oo

with

FIG. 1. Mean square end-to-end distance (R (N)) and ra-
dius of gyration (Rd(N)1 vs N for 10~N~ 150. The lines
give the expected slope of 1.

N

r. m =N 'g r;.

The time is given in units of r.
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deviations from the Rouse t'/ behavior. One sees a

crossover from a weak dip (N =50) to a clear I '/ behav-
ior (N =150) for g1(t), as expected by reptation. It is

important to note that these values are independent of
chain length, meaning that the internal monomers do not
feel their chain ends. If we assume a Rouse model for
the motion of the monomers up to a time r„g 1(r,)
should give g1(i, )=-2(R)(N, )). With d =g1(r, ) =21
and a persistence length of 1.34, N, =-35. This is more
than 20 persistence lengths for the present model. It
should be noted that the average over all monomers of
the chains for g1(t) does not display a clean t '/4 behav-
ior because of the very mobile ends. As expected, the es-
timates of N, from g1 and from D give somewhat
different answers.

To check the validity of the data as well as the equili-
bration we calculated the Rouse modes given by

Xp(r) -—g r;(r)cos1
"

p/r(i —1)

[r1(r)+r/v(I) j. (5)

As the chains are Gaussian, these are eigenmodes of the
chains and cross correlations turned out to be zero within
our error bars. The amplitudes (Xp(0) Xp(0)) vary as

p as required for an ideal melt chain. Together with

Fig. 1 this gives a very sensitive check on the equilibrium
of the system. 2' Of special importance is the behavior
of the autocorrelation function (Xp(t) Xp(0)). For
N/p(N„ the longest relaxation time for mode p is

rp - (N/p) 2, while for N )N, we expect rp - (N/p) ' if
reptation holds. Figure 3 shows the relaxation time rp vs

N/p, which should give a universal curve. The data al-
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FIG. 3. Relaxation time of the various modes for 10~N
~ 150 vs N/p. Inset: i~(p/N) vs N/p. The time r~ was ob-
tained as the inverse relaxation rate. After an initial drop all
the data (/V /p ~ 10) showed a single exponential decay,
defining r~. Note that the time here is given in terms of the in-

tegration time step, ht =0.006m. This gives the crossover at
about r, 1800m.
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most perfectly define a common curve with a clear cross-
over from rp —(N/p) to zp- (N/p) for N, =N/p
= 35~ 5. This is also displayed in the inset. Thus the
internal modes define a value of r, = 1800m and N, = 35
which are exactly the same r, and N, as from g1. It
should be noted that neither experiment nor simulation
has shown this behavior before.

We can also check how the results for the diffusion are
infiuenced by the free ends. This could be done by com-
paring the bead friction g calculated from the modes
with that calculated from the Rouse limit of D. The re-
laxation rate of the modes in the Rouse limit'2 (plateau
of inset in Fig. 3) is given by s (N/p) /;i /3/r kBT
which gives ( ~„=(30+'3)r . From the diffusion
constant D=kaT/N/;, one gets (D=(15~3)i '. This
factor of 2 was also found for polystyrene.

To further compare our results with experiments, we
need to map our monomers onto chemical species. Here
we will do this for two examples, namely polydimethyl-
siloxane (PDMS) at room temperature and polystyrene
(PS) at about 210'C. Usually the persistence lengths
are compared. However, this is not the proper way to
proceed since one knows that N, is not only a function of
density, but also a function of temperature and pressure.
Instead, we map the entanglement lengths by comparing
N, measured from the plateau modulus to that found
from the Rouse modes. Since the increase in relaxation
time of the modes produces the plateau modulus, we
think this is the natural choice. Thus, N, 35 corre-
sponds to M, 18000 (PS) and 9000 (PDMS), which
means that our longest chains are equivalent to molecu-
lar weights of about 77000 (PS) and 38000 (PDMS),
respectively. Withs27 ijc 6 A (PDMS) and 7 A
(PS) and molecular weights of 104 (PS) and 72
(PDMS), this gives, with d$ 0.8(R (N, )), tube diam-
eters of dT = 82 A (PS) and dT =60 A (PDMS). 2 s

These data can be also used to calculate the distance
where an onset of the t '/4 regime should be seen. As our
data show, the onset of the I'/4 regime is given by d

2(R)(N, )). Again using the above data and R /RP
=6, one finds d =39 A (PDMS) and 53 A (PS). Since
the early neutron spin-echo experiments did not label the
inner part of a chain, it is clear why they did not ob-
serve the t '/ regime, although they studied PDMS up to
M 60000. The averaging over all monomers strongly
smeared out the effect of reptation, which then was
beyond the resolution of the experiment. But by use of a
triblock copolymer with a labeled center, especially for
PDMS, it should be possible to verify the predicted value
of 39 A. for the onset of the t '/ regime. Such an experi-
ment has yet to be performed.

To conclude, we present a simulation which is able to
cover the crossover from Rouse to reptation. The data
compare extremely well with results obtained by viscosi-

ty and diffusion-constant measurements interpreted by
the reptation model. This is the first case where the mi-

croscopic polymer dynamics is shown with the reptation
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model. A final proof, however, would be the identifi-
cation of the motion of the monomers along the primitive
pat
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