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Simulations of amorphous silicon formed by quenching of the liquid indicate that a-Si has a
Boltzmann-like distribution of local geometries, corresponding to a "glass temperature" of roughly 700
K. The resulting tetrahedral network exhibits native defects, threefold- and fivefold-coordinated atoms,
which have mean formation energies of 0.6 and 0.3 eV, respectively, and which are apparently mobile
even at fairly low temperatures. These results are obtained by a novel approach to the analysis, and are
relatively insensitive to the empirical interatomic potential used in the simulations.

PACS numbers: 61.40.+b, 61.20.Ja, 61.70.At, 61.70.Ey

Interest in the fundamental properties of glassy and

amorphous systems has grown steadily over the years,
both because of their ubiquity and practical importance,
and because of the subtle and fascinating questions to
which they give rise. However, the quantitative descrip-
tion of disordered materials is intrinsically difficult.
Often their microscopic properties can only be inferred
indirectly by the comparison of measurements of average
statistical properties with results of theoretical models.

Here, we present results of simulations of a prototypi-
cal disordered system, amorphous silicon (a-Si), formed

by rapid quenching of the liquid. We use two very
diA'erent empirical potentials to model the atomic in-

teractions, in order to ensure that the results do not de-

pend upon the choice of potential.
By introducing a novel technique for analyzing the re-

sults, we are able to extract important quantities which

have not previously been accessible in such calculations.
We find that a-Si formed by quenching is a glass, in the
sense that it exhibits a thermal distribution of local
geometries, corresponding to the temperature at which

the undercooled liquid becomes effectively a solid. We
infer this "glass temperature" to be T =700 K. How-

ever, "defects" in the tetrahedral network remain mobile
down to somewhat lower temperatures, "freezing" at
roughly 500 K. We are also able to address the some-

what subtle issue of defect formation energies in a-Si.
We find that fivefold-coordinated atoms, viewed as na-

tive defects in a-Si, have a mean formation energy of 0.3
eV, half that of threefold-coordinated atoms, and that
the fivefold-coordinated atoms are correspondingly more
numerous.

a-Si represents an ideal system for studies of disorder,
since it is particularly simple, consisting of a one-
component tetrahedrally bonded network. Moreover, a-
Si is of great technological importance. It is therefore
natural that several theoretical studies of its structural
properties have recently been reported. ' (We do not
address electronic properties here. )

Wooten, Winer, and Weaire' introduced a discrete

Monte Carlo bond-switching algorithm for generating a
continuous tetrahedral amorphous network. More re-
cently, Ding and Anderson generated a structural mod-
el for a-Ge (which is quite similar to a-Si) by performing
a molecular-dynamics (MD) simulation of Ge, adapting
an empirical interatomic potential7 developed for Si.
The Ge was melted and quenched, forming an amor-
phous tetrahedral network. A similar procedure has
been followed in studies of a-Si by at least three other
groups, ' ' with considerable success.

These studies, though illuminating, naturally have cer-
tain limitations. The model of Wooten, Winer, and
Weaire cannot address issues of defects in a-Si. Two of
the dynamically generated models24 used interatomic
potentials which had been adjusted ad hoc to give a good
amorphous structure upon quenching, and so it cannot be
assumed that energies are quantitatively described. This
could aA'ect the number and type of defects or highly
strained bonds.

Two recent studies used the potential of Stillinger
and Weber7 (which we hereafter call SW). This poten-
tial has been relatively well tested, and gives reasonable
energies for point defects in Si. However, SW does not
result in a tetrahedral structure upon simple quenching
of the melt, and so tricks had to be used during the
cooling to ensure that a tetrahedral structure was
reached. Thus the kinetics of quenching may not be
realistically described.

Finally, in a radically different and, in principle, fun-

damentally superior approach, Car and Parrinello6 have
performed MD simulations of quenching of Si using a
fully quantum mechanical calculation of the energies
and forces. However, this approach is so numerically in-

tensive that, at present, it is restricted to very short simu-

lated times and small numbers of atoms.
The present work diAers from previous studies in

several ways. By far the most important of these is the
manner in which we analyze results of the simulation,
which permits us to extract the glass temperature T*,
and to infer the formation energies of defects in the
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tetrahedral network. In addition, the interatomic poten-
tial and simulation techniques used here differ from pre-
vious work.

We use a new potential developed recently by one of
us. This potential, hereafter referred to as T2, is similar
to one presented earlier'o (Tl), but has been improved to
avoid certain pathologies" of Tl. T2 has been exten-
sively tested, and is particularly appropriate in the
present context because it describes the energies of point
defects in crystalline silicon rather well.

However, all the important results have been checked

by our repeating the analysis with SW. SW is comple-
mentary to T2 in having very different strengths and

weaknesses, ' so that the quantitative similarity of re-
sults obtained with the two potentials provides strong
evidence for the reliability of the conclusions.

We use a continuous-space Monte Carlo (MC) algo-
rithm instead of molecular dynamics. We begin with
216 atoms in the diamond structure at the equilibrium
lattice constant, with periodic boundary conditions. The
sample is heated at fixed volume to 3000 K, and permit-
ted to melt and equilibrate. The melt is then cooled at
inverse rates ranging from 1 to 16 MC steps/atom-K,
with the maximum length of the random steps continual-

ly updated to maintain a success rate of approximately
0.5 (subject to an absolute maximum step length of 0.3
A to maintain some connection with real-time kinetics).
After reaching 300 K, we equilibrate and take statistics
to obtain sample properties.

The radial distribution function obtained in this way
for T2 gives a first-neighbor distance and coordination
number in excellent agreement with experiment, but
shows too sharp a first-neighbor peak, and very weak
subsequent peaks, which we attribute to the weak bond-
angle forces in the present model, which permit a more
distorted topology than in real a-Si. Because of the very
local nature of the properties studied here, this does not
seem to represent a significant problem, especially in
view of the comparison with another very different sam-
ple and potential.

A central step in our analysis is the partitioning of the
cohesive energy of the sample among the atoms. While
such a partitioning is not unique, it has proven to be a
very powerful tool. For T2, the energy is partitioned as
described in Ref. 9. For SW, the two-body interactions
are divided equally between the two atoms. The three-
body terms each involve a vertex atom, rather than treat-
ing general three-atom interactions, and so we assign the
corresponding energy to the vertex atoms.

The solid line in Fig. 1(a) shows the distribution of
atom energies obtained in this way, for a sample formed

by a relative fast quench. P(E) is defined as the proba-
bility of finding an atom in the sample at energy E. The
distribution has a low-energy cutoff around the crystal
energy ( —4.6 eV), a peak about 0.15 eV higher, and a
high-energy tail.
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We can characterize the individual atoms as
threefold-, fourfold-, or fivefold-coordinated, and consid-
er their separate contributions to P(E). (To define coor-
dination, we count the number of neighbors within 2.75
A, the position of the dip in the radial distribution func-
tion between the first- and second-neighbor peaks. For
the SW sample the corresponding distance is 2.9 A. )
The broken lines in Fig. 1(a) show P(E) decomposed in

this way. Distinct peaks are seen for each type of atom,
illustrating the higher energy of nontetrahedral atoms.

Figure 1(b) shows the same data on a logarithmic
scale. The high-energy tail for the fourfold-coordinated
atoms closely obeys an exponential Maxwell-Boltzmann
distribution over nearly 3 orders of magnitude. Howev-

er, an analysis of the slope gives an effective temperature
T* of about 750 K, much higher than the actual 300-K
temperature of the sample.

Evidently, during quenching the sample undercools to
about 750 K while maintaining a thermal quasiequilibri-
um among the kinetically accessible liquidlike states. At
that point it falls out of quasiequilibrium and becomes a
supercooled liquid, i.e., a glass. While not all runs show
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FIG. l. Energy distribution P(E) of atom energies at 300
K. (a) P(E) for one T2 sample. Solid line: total distribution.
Dashed, dot-dashed, and dotted lines are projected distribu-
tions for fivefold-, fourfold-, and threefold-coordinated atoms,
respectively. (b) Same data on a logarithmic scale. The solid

curve is omitted for clarity. Double-peaked structure in the
fivefold distribution was not seen in most samples. (c) P(E)
for SW sample of Ref. 3.
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such perfectly exponential behavior, the value inferred
for T* is a monotonically increasing function of quench
rate, as expected. For the slowest quenches attempted,
T* approaches 650 K.

Experimentally, T* can be readily measured for ma-
terials which are good glass formers, i.e., which remain
disordered even at the slowest laboratory cooling rates.
But this quantity is relatively inaccessible for materials
such as a-Si, which are formed by processes which are
extremely fast, or which are highly nonequilibrated at all
temperatures. Yet T* is a crucial parameter determin-
ing the properties of the material. For example, Bar-
Yam, Adler, and Joannopoulos' have stressed the im-

portance of T in determining band tails and the num-

ber and type of defects in amorphous semiconductors.
Thus a theoretical determination of T is of considerable
interest, but has not been feasible with traditional tech-
niques.

The tails of the projected distributions of threefold-
and fivefold-coordinated atoms can also be analyzed to
yield effective temperatures T3 and T5 . Because of the
much worse statistics, such an analysis must be some-
what crude, especially for the few threefold-coordinated
atoms. However, we have analyzed several samples in

this manner, and consistently obtained values of T5
=500 K, much lower than T . (T3* appears to be as
much as 100 K lower than Ts, but we cannot place
much reliance in this result because of the poor statis-
tics. )

We interpret this to mean that, below T, the amor-
phous network is essentially frozen, except for the de-
fects, which remain mobile down to much lower temper-
atures. Such mobility presumably involves bond switch-

ing, ' ' rather than substantial motion of the actual
atoms. The low values of Ts and T3 mean that coordi-
nation defects in a-Si can be very effectively annealed in
the intermediate temperature range, and these tempera-
tures may be related to the threshold temperature of
about 425 K for annealing found by Lang, Cohen, and
Harbison. ' We stress that, in view of the significant
difference between T* and T5, the fivefold-coordinated
atoms must be viewed as defects in the glass, and not as
part of the inherent glassy disorder.

While the partitioning of energy among individual
atoms is, strictly speaking, nonunique, we believe that
there cannot exist two different partitionings which both
give an exponential tail in the energy distribution, but
with different exponents corresponding to different
values of T . As an independent check, we have
confirmed that T* is fairly close to the temperature at
which self-diffusion becomes negligible on the scale of
the simulation.

To test dependence of the results upon the empirical
potential used, we repeat the above calculation using the
SW potential, taking statistics as before at 300 K on the
sample generated and characterized by Kluge, Ray, and
Rahman. The results are shown in Fig. 1(c). From the

564

exponential tails, we infer a value of T =1000 K and
T5 =670 K.

While the precise values of T* obtained with the two
potentials are somewhat different, the similar overall be-
havior and semiquantitative agreement are striking. For
both models, the quenched samples exhibit a quasi-
thermal distribution of local geometries at a temperature
T well below the melting temperatures, with defects
remaining in equilibrium down to a temperature Ts
roughly 30% lower than T .

We now discuss the defects in the tetrahedral network,
in particular their number and formation energies.
Traditionally, only threefold-coordinated atoms have
been considered as possible intrinsic defects in a-Si. Re-
cently, however, Pantelides proposed' that fivefold-
coordinated atoms should be considered on an equal
footing with threefold-coordinated atoms as possible in-
trinsic defects, and offered arguments" suggesting that
fivefold-coordinated atoms could in fact be the predom-
inant defect.

In these simulations, the fraction of threefold-coor-
dinated atoms ranges from 0% to 2%, while fivefold-
coordinated atoms represent from 3% to 6'%%uo of the sam-
ple, with fewer defects at slower quench rates. In every
sample we find at least 3 times as many fivefold-
coordinated atoms as threefold. Kluge, Ray, and Rah-
man also found fivefold-coordinated atoms to dominate
in earlier simulations. Thus, regardless of the quantita-
tive accuracy of these results, the outright neglect of
fivefold-coordinated atoms as a possible native defect in
a-Si is clearly unjustified.

The most crucial property of a defect is its formation
energy. However, it is not clear in general even how to
define the formation energy of a defect in a disordered
system. In particular, if the defect is present as the ma-
terial passes through the glass transition, the surround-
ing material may be expected to accommodate the de-
fect, giving a much lower energy than for a defect insert-
ed into the cold material. This problem does not arise in

crystalline materials, where the geometry of the sur-
rounding material is more constrained. Thus in the
present case it is necessary to study "native" defects,
which are present in the as-formed sample, rather than
inserting defects by hand. (The latter procedure might,
however, be appropriate for the study of, e.g., radiation-
induced damage in cold a-Si.)

If the density of defects is low, we can obtain a reason-
able measure of the formation energies in the following
way. For each N-fold-coordinated atom we calculate the
energy of the cluster of N+1 atoms consisting of the
atom and its neighbors. We then subtract our best esti-
mate of the energy of N+1 atoms in the ideal tetra-
hedral amorphous network, estimated from the peak of
the energy distribution for fourfold-coordinated atoms.
The results for the T2 sample are shown in Fig. 2(a).

The distribution of "formation energies" for fourfold-
coordinated atoms in Fig. 2(a) is peaked at zero energy,
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consistent with the definition used here. We obtain aver-

age formation energies for threefold- and fivefold-

coordinated defects of 0.6 and 0.3 eV, where the
sample-to-sample reproducibility is about 0.05 eV. It is

important, though, to notice that the width of the distri-
butions is comparable to their separation. Thus while

the formation energies are well defined in a statistical
sense, any quantitative analysis of activated processes
should integrate over the entire distribution.

The threefold energy is slightly under one-fourth the
vacancy formation energy in the crystal (2.8 eV with this
potential), as expected. In addition, a naive estimate of
the formation energies can be obtained directly from Fig.
1(a). The energy peaks for threefold- and fivefold-
coordinated atoms are displaced from the fourfold peak
by about 0.25 and 0.65 eV, respectively, in good agree-
ment with the more careful estimate. However, this
simpler approach only works because of the very short
range of the potential, and is not applicable to the SW
results.

No experimental values are available for these forma-
tion energies. However, Pantelides suggested that a
variety of data are consistent with formation energies of
0.8 and 0.6 eV for threefold- and fivefold-coordinated de-
fects. ' Similarly, Bar-Yam, Adler, and Joannopoulos'
inferred a formation energy of 0.7 eV for the paramag-
netic defect (which they assumed to be threefold).

Figure 2(b) shows the corresponding analysis for the
SW sample. We obtain a formation energy of 0.3 eV for
the fivefold-, and 0.6 eV for the threefold-coordinated

formation energy (eVj

FIG. 2. Distribution of "formation energies" for atoms of a
given coordination, defined relative to the ideal tetrahedral
amorphous network as described in the text. From upper left
to lower right, lines are fourfold-, fivefold-, and threefold-
coordinated atoms, respectively. (a) For the same T2 sample
as in Fig. 1(a). (b) For the SW sample of Ref. 3.

defects, in extremely good agreement with the T2 values.
However, the SW sample contains only one threefold-
coordinated defect, making it risky to draw general con-
clusions about the threefold case. The energy per dan-
gling bond for SW, in the absence of strain or of second
neighbors closer than in the crystal, is much higher: 1.1

eV per dangling bond.
Finally, we note that the detailed analysis which per-

mitted us to extract glass temperatures and defect for-
mation energies would not be possible in an ab initio cal-
culation, where there is no convention at present for spa-
tially partitioning contributions to the total energy.
Thus the sacrifice in accuracy involved in the use of
empirical interatomic potentials is compensated in part,
not only by the added convenience and the possibility of
greater statistical precision, but also by the opportunities
for additional insight. Such heuristic analysis is particu-
larly helpful in the study of disordered systems, where a
rigorous treatment of defect energies and glass tempera-
tures for real materials is not generally feasible.
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