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Observation of Self-Interaction of Bernstein Waves by Nonlinear Landau Damping
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It is confirmed experimentally that the self-interaction of electron Bernstein waves occurs by means of
nonlinear cyclotron (Landau) damping. This wave-particle interaction occurs in a relatively broad fre-
quency range: 1.46 & co/co, & 1.54, 1.60 & co/co, & 1.75. The virtual wave is observed most strongly at
the half-harmonic electron cyclotron frequency near co/co, =1.5. Although this self-interaction always
occurs for ktv, /co, &0.1, the virtual wave cannot be detected for ktc&/co, +0.15.

PACS numbers: 52.35.Fp, 52.35.Mw, 52.50.Gj

Recently, ion-Bernstein-wave heating at low ion cyclo-
tron half-harmonic frequencies co/co„=-m/2 has been in-

vestigated experimentally. ' Also, ion heating by non-

linear absorption at co/co„= —', was investigated by Abe

et al. , on the basis of particle simulation. The possibili-

ty of bulk-ion heating by nonlinear ion cyclotron (Lan-
dau) damping has been indicated theoretically by Porko-
lab and numerically by Sugaya at co/co„=- —,', where

the beat wave produced by the self-interaction of ion

Bernstein waves resonates with the bulk ions. Further-
more, a great deal of theoretical eff'ort has been directed
to understanding the process of nonlinear Landau damp-

ing. Experimental observations of nonlinear Landau

damping have been reported for electron Bernstein
waves' and for electrostatic waves. "

In this Letter observations are reported of nonlinear
cyclotron (Landau) damping resulting from the self-
interaction of electron Bernstein waves (hereafter re-
ferred to simply as Bernstein waves). To our knowledge,
direct observation of this mechanism has not been re-

ported previously. The resonance condition for nonlinear
Landau damping in a magnetic field is given by

co
—co" —(kp —kI(')vp =mco„

where (co,k) and (co",k") are the frequencies and wave

vectors of the two Bernstein waves, co, is the electron cy-
clotron frequency, and m is an integer. The virtual wave
(co', k') (beat wave or quasimode, co'=co —co", k'=k
—k") resonates with electrons of velocity vt by means of
cyclotron damping. In the case of self-interaction of
Bernstein waves, co"= —co, k" = —k, and then co'=2co,
k'=2k. Because Bernstein waves propagate almost per-
pendicularly to the magnetic field (k&»kt~, )kI~v, /co,

~

«1), the condition 2co=mco, is satisfied, where m is an
odd integer.

Experiments were performed in a linear device' con-
taining an argon plasma about 9 cm in diameter and 50
cm in length produced by a low-pressure ( 2X10
Torr) glow discharge in a magnetic field (8o=60-100
6). The plasma parameters were as follows: density,
n, =10 -10' cm, and electron temperature, T, =5-7
eV. As shown in the inset of Fig. 1(a), Bernstein waves
were excited by use of two antennas made of rectangular

mesh plates (1.5X4.5 cm2) (denoted by A and 8); the
distance between the centers of the two antennas was 4
cm. The wave propagating in the backward direction
was shielded by rectangular meshes (2 x 5 cm2) placed 2
mm from each antenna plate. The antenna plates were
set inside about 0.5 cm from the diametrically opposed
edges of the plasma column, and the antenna plane made
an angle of 8 (=-4') with the magnetic field. A continu-
ous rf signal (P & 2 W, co/2tr =240-300 MHz) passing
through a 2co-rejection filter was applied to A, and an rf
signal with a phase difference of about 180' from A was

applied to 8.
Waves were detected by use of two antenna probes

which were movable axially and radially. Wave patterns
of waves co were measured by means of the usual inter-
ferometer method. On the other hand, wave patterns of
waves co'=-2co across (along) the magnetic field were ob-
tained by use of a reference signal from the axial (radi-
al) antenna probe. Figure 1(a) shows typical wave pat-
terns across and along the magnetic field for waves co

and co'=2co. From curves (1) and (3), k&=8.6 cm
and kt=1.2 cm ' are obtained, while from curves (2)
and (4), k& =16.9 cm ' and kI~ =2.6 cm ' are ob-
tained. Consequently ktR=0.09 (R =v, /co, ), and this
value is determined by the distance between the exciting
antennas. It is seen that k'=2k is satisfied within the ex-
perimental error of 6/0. Although the wave (co', k') is al-

ways detected for ktR &0.1, we cannot detect this wave

for k~~R&0. 15. This is ascribed to the fact that Bern-
stein waves are strongly damped via the interaction with

resonant electrons before the occurrence of the self-
interaction because the quasilinear damping rate abrupt-
ly becomes large with ktR. But, if a tail of higher-
energy electrons exists in the distribution (which occurs
mostly in a lower-pressure discharge), quasilinear damp-
ing of Bernstein waves is dominant even for k~tR—=0.1.
Therefore, the pressure was controlled so as to reduce
tail production. Figure 1(b) shows typical frequency
spectra picked Up by a receiving antenna probe, where
the peak at co is heavily attenuated. The wave amplitude
at co' is as much as about 30 dB below that at co. The
waves with broad spectra ranging from 340 to 450 MHz
are incoherent, and not relevant to the present experi-
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FIG. 1. (a) Interferometer output across [(I) and (2)] and along [(3) and (4)] the magnetic field for co [(I) and (3)] and cv' [(2)
and (4)]. co~cv, =-7.0, co/co, =1.51, cv/2m=250 MHz, cv'/2m=501 MHz. (b) Frequency spectra of waves (c) T.he co-k& diagram,
where filled and open circles correspond to waves cu and co'; solid curves are the calculated dispersion relation of the Bernstein wave
for co~/cu, =7.0, k~~R =0.09 (R =v, /co, )

ment. In Fig. 1(c) the locations of frequencies and wave numbers are plotted on the calculated dispersion diagram
e =0, where e is the dielectric function given by

2co
t. (cv, k) =1+

& &
1+ g exp( —X, )l„(X,)Z (2)

k vc llvc n llvc

Here, k, =k&v, /2co„v, = (2T,/m, ) '/, co~ is the electron plasma frequency, I„ is the modified Bessel function of nth or-
der, Z is the Fried-Conte plasma dispersion function, and the other notations are standard. We see that the waves

(co,k) fit well the dispersion of Bernstein waves. On the other hand, the waves (cu', k') do not agree with the dispersion,
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FIG. 2. (a) Spatial evolution of the amplitude of the wave (co,k). (b) Calculated spatial evolution of the field energy density of
the Bernstein wave, where co~o/cv,

' =9.0, ~
E

~ / 16nn, T, =0.0004, and k ~~R =0.09.
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'
+ylE~I'=alE I', (3)

and their amplitudes are very weak; therefore this wave
is considered to be a virtual wave (nonresonant beat
wave). Figure 2(a) shows semilog plots of the wave am-
plitude of pump Bernstein waves versus perpendicular
distance x.

The kinetic wave equation for the self-interaction of
Bernstein waves by nonlinear Landau damping is

where y is the quasilinear spatial damping rate
y=21m(e)/[&Re(e)/Bk&] and a is the nonlinear wave-
particle coupling coefficient given by

nco, cop y exp[ —(co' —mco, ) /k(( v, ]

kI|v, co, 4n' n, T, 8 Re(c:)Bk ~

BC/—D

p, f(co/co, —p)2 —1][(co/co, —r)2 —1]
'

Here

~ =„, dg(- I)~"(af/ag) J, (p)J,(p)J — (p') J,— (p'),
W OO

B= dg( I)~ -.(af/-ag)J, (p)J.(p')J, .(p), C=B(p r), D= —exp( —~,,')I (~,'),

f(g) =exp( —g), g =v&/v&, X, =k&vt /2co„p=k&v&/co„p'=k&v&/co„

and J~ is the Bessel function of pth order. Also, the nonlinear equation for the virtual waves is given by

p 3U
U & r[(p V)(g'+—B')+

I
e(co', k')

I co, k v, 2n n, T, p, q, r (co/co, —q)(co'/co, —r)

where co'=2co, k'=2k,

(4)

Fig. 3(a). The dotted curves give a contour map of
calculated equifield lines for the virtual wave. The

tual wave is not only detected for pump Bernstein
ves at frequencies near half-harmonic cyclotron fre-

q encies, but is also detected for pump waves in the fre-
quency range 1.60& co/co, & 1.75. As shown by Fig.
3(c), the appearance of virtual waves is in good qualita-
tive agreement with the theoretical prediction. But, for
pump waves in the frequency range 1.60 & co/co, & 1.75,
the wave (co', k') may be excited because the value of
e(co', k') becomes small. Therefore, one must take into
account the process of resonant wave-wave interaction in
this frequency range.

The existence of a threshold of the electric field energy
of the pump wave for the detection of the virtual waves
also was observed (I E I /16nn, T, ~ 5 X10; this es-

timation has an error of a factor of 6). It seems to corre-
spond to the theoretical threshold

I E„I
~ y/a from Eq.

(3). Further, an increase (up to 10%) of the electron
temperature is observed only at detectable locations of
the virtual wave.

In summary, it was confirmed experimentally that the
self-interaction of the Bernstein wave occurs by means of
nonlinear Landau damping. This wave-particle interac-
tion occurs in a relatively broad frequency range,
1.46 & co/co, & 1.54, 1.60 & co/co, & 1.75. The virtual
wave is observed most strongly at a frequency near
co/co, =1.5. This self-interaction is always observed for
k~~A&0. 1 but does not occur for k~~R~0. 15. I believe

co'(X) = —0 024co (X—5) '+ co'

where X=X/(2n/k~). If one compares this spatial be-
havior with the experimental one in Fig. 2(a), good qual-
itative agreement is observed. The effective damping
rates (assuming exponential damping at the local posi-
tion) are estimated from the curves in Figs. 2(a) and
2(b). The maximum values of these effective damping
rates (k;,/k&) are given in Figs. 2(a) and 2(b). The ob-
served values agree with the theoretical ones within a
factor of 2.

In Fig. 3(a) wave patterns of the virtual wave are
shown. It can be seen that virtual waves are detected in

a spatially localized region, denoted by horizontal bars in

Fig. 3(a). Figure 3(b) shows the spatial evolution of the
virtual wave (co',k') calculated by use of Eqs. (2)-(5).
The waves initially increase in amplitude, saturate, and
then decrease; the position of the maximum wave ampli-
tude varies with co/co, . As shown in Figs. 3(a) and 3(b),
the detectable region of the virtual waves corresponds to
the region near the position of the maximum amplitude
of the virtual waves obtained from the theory. Figure
3(c) shows the detectable locations of the virtual wave

by vertical bars, which correspond to the horizontal bars

A'=„d(f(g)(g/p )(1 —2g )J —,(p)J (p)J,(p') J — (p'),

B' =„d&f(&) (&/p') J —,(p)l (p)J,(p') l — (p').

Since the wave (co', k') is the virtual wave, e(co', k') e0.
Figure 2(b) shows the spatial evolution of the wave in

amplitude calculated from the measured parameters and the
Eqs. (2) and (3). The spatial variation of the electron vir
density (similar to that of the experiment) is assumed to wa
be given by u
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FIG. 3. (a) Interferometer output across the magnetic field for the wave (co', k'). (b) Calculated spatial evolution of the field en-

ergy density of the virtual wave. (c) Vertical bars show locations of the detectable region of the wave (co', k'), and dotted lines are
the calculated equifield contour map of the virtual wave on the x-co plane, where the lines are, from the outside,

~ E„( /16nn, T, =10 ', 5&c10, 10,5x10, 10,5X10, 10;co/o/co, =9.0, ~E ~
/16nn, T, =0.0004.

that these results contribute to the understanding of the
ion-Bernstein-wave heating at half-harmonic ion cyclo-
tron frequency, and the electron cyclotron harmonic
wave heating, in a tokamak plasma.
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