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Trajectory Scaling Functions at the Onset of Chaos: Experimental Results
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We use an averaging technique to estimate the periodic points for attractors near the transition to
chaos via period doubling and quasiperiodicity in two experimental systems. Using the averaged experi-
mental data we then evaluate the trajectory scaling functions for both routes to chaos.
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The universality of several simple transitions to chaos
has been characterized by scaling indices, ' singular-
ity [f(a)] spectra, ' and trajectory scaling functions
(TSF's).4' The first two methods have some disadvan-

tages. The scaling indices determine the local behavior
near at most a few points on the attractor, and contain
no global information. The spectrum of singularities
contains global information about the averaged orbit, but
no local positional and dynamical information. The
TSF, on the other hand, contains all local scaling infor-
mation and also describes the global structure, so that it
yields the most information about experimental transi-
tions to chaos. However, unlike the f(a) spectrum, the
TSF depends on ratios between small nearest-neighbor
distances, making it sensitive to noise. This sensitivity
has been the primary obstacle to our obtaining TSF's
from experimental data. In this Letter we show that we

can reduce the effect of noise in experimental data by
averaging. We use this technique to obtain the TSF for
data from two experiments, one an electronic circuit
which period doubles to chaos, and the other, a
Rayleigh-Benard system which becomes chaotic via both
period doubling and quasiperiodicity.

The electronic system that we have studied is the
driven diode resonator circuit, 7 consisting of two resona-
tors in parallel, coupled by a common resistance (R, ).
The current through the resonators can exhibit chaotic
behavior. s The resonator itself (see Fig. 1) consists of a
rectifier diode (1N5625), a 150-mH inductor (L), and a
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1.5-A resistor (Ro) in series. A Hewlett Packard model
3352A function generator drives the resonators with a

triangle wave, the amplitude (V) and frequency (f,„t) of
which serve as the control parameters for the system.
We measure the voltage drop across either resistor Ro as
a function of time, using an EG&,G model 113 preamp,
and digitally sampling at 262. 144 kHz (f,b, ) with a
Hewlett Packard 35650 spectrum analyzer. For weak
resistive coupling (R, = 30 Q), the system period dou-

bles to chaos, and we are able to obtain a clean 2 -cycle
attractor.

Since the forcing frequency of the system (f,„t) is only
about a factor of 10 smaller than the sampling frequency

f,b„we obtain the Poincare section from the time-series
data by sine-curve interpolation. We make our Poincare
cut by choosing the set of local maxima IykI of this in-

terpolated signal. In Fig. 2 we plot the Poincare map (y„
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FIG. 1. The coupled driven diode resonator circuit. Each
resonator consists of a rectifier diode (1N5625), a 150-mH in-

ductor (L), and a 1.5-0 resistor (Ro) in series. The resonators
are coupled by a common resistance R, . The circuit is driven
with a forcing amplitude V, and the voltage drop is read across
Rp.
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FIG. 2. The Poincare map y„vs y„+I for the Poincare sec-
tion of extrema y, of the experimental signal from the driven

diode resonator. Note that the points are bunched into sixteen
distinct domains. The noise in the data scatters the points in

these regions. Inset: One group of four bunches in greater de-

tail.

539



VOLUME 61, NUMBER 5 PHYSICAL REVIEW LETTERS 1 AUC UST 1988

vs y„~~) for a time series for which the Fourier spectrum
shows a 2 cycle. We observe that the points of the at-
tractor lie in sixteen disjoint regions. Since the data are
noisy, these regions are difl'use, not pointlike, and we

must average to estimate the positions of the actual
periodic points used to calculate the TSF.

We study both period doubling and quasiperiodicity in

small-aspect-ratio (two by one) forced Rayleigh-Benard
convection in mercury. We heat the fluid from below to
induce the oscillatory instability (defining an internal
frequency f;„t), apply a dc magnetic field parallel to the
axes of the convective rolls, and inject a pulsed alternat-
ing current to provide an adjustable perturbation (fre-
quency f,„t, amplitude A,„,). The apparatus has been
described elsewhere. ' " We measure the temperature
oscillations at a point in the bottom of the cell and obtain
a Poincare section directly by measuring in synchroniza-
tion with the external pulses. We use a bandpass filter
with cutoffs at 0.01 and 10 Hz to reduce system noise.
However, the dominant noise source is 1/f temperature
drift, which cannot be effectively filtered. The internal
oscillator tends to lock to a rotational ratio with the
external forcing, f;„,=(p/q)f, „,. ' ' We tune an irra-
tional frequency ratio by successively locking to its
continued-fraction approximates, e.g. , for the golden
mean [crG =(J5—I)/2] we lock to the Fibonacci ratios,

To observe period doubling we choose
a given locked tongue and increase the forcing ampli-
tude, adjusting the frequency to find a clean period-
doubling cascade. ' As discussed in a previous paper,
the two-dimensional nature of the fluid flow for strong
forcing limits us to low-order bifurcations such as
2 8 —,', . A complete discussion of these issues may be
found elsewhere. 's

Although the experimental attractor may be many di-
mensional, the dissipation is large enough so that the lo-

cal structure and time ordering in both of our experi-
mental systems appear nearly one dimensional.

We first treat the period-doubling data. Since we ex-
pect the fractal dimension of the orbit to be smaller than

1, we embed the data in three dimensions, ' and repre-
sent each point as xk =(xk, xk+~, x/, +2), where jxkj is the
Poincare section of the experimental time series. We
define an orbit to be the time-ordered set of all nonident-
ical points in fxkj. Thus if we have a period-N state, the
orbit is the set of points lx~, x2, . . . , xNj, and xj+~ =xJ.

Let us consider what happens as we increase a control
parameter through a period-doubling bifurcation to an N
(=2") cycle. Just beyond the bifurcation, each point of
the original orbit has split in two and the orbit does not
quite close after N/2 points, but returns exactly after N
points. Barring accidental crossings of the orbit, for any
period-N orbit, xj+/v/2 and x~ are nearest neighbors
(both points having bifurcated from the same parent
point). Similarly, x, ~~/4 are the next-nearest neighbors
to xj, having bifurcated from the parent point of xj.

Drift in the control parameter and other sources of ex-
perimental noise prevent us from obtaining cycles with

multiplicity greater than 2; hence we cannot compute
the limiting scalings from the 2 cycle, as suggested by
Feigenbaum. Neither can we compare attractors with
difl'erent orders of bifurcation, since we cannot measure
Lyapunov exponents in real tiine and hence cannot ob-
tain different attractors of the same stability. Instead,
we extract the TSF by examining the hierarchy of dis-
tances within a single period-doubled attractor. For an
n-fold orbit (where N =2"), we define the TSF oj (Ref.
4)

if 0& j~N/4,
Xj Xj+~/2

0'j

if N/4 &j ~ N/2.
Xj Xj+pf/2

We can simplify this function by noting that iteration
magnifies the efl'ective dissipation of the map

T:Xk Xk+ ~, (2)

so that high iterates are locally one dimensional. '7

Hence for large N, the points xk, xk+N/2, and xk~/v/4
are nearly collinear, and oj reduces to a scalar function
ofj depending only on the absolute values of the respec-
tive distances,

I xj xj+/v/41 (3)
I xj xj+/v/2 I

When the map T is a diffeomorphism, oj+ ~ and oj are
identical to lowest order, since

I xj+ I xj+ I+N/4 I

0'j+
&

I x/+i —x,+i ~w/2 I

I T(xj) T(xj+/v/4) I—
I T(xj) —T(x/~/v/2) I

'

which after a first-order Taylor expansion of T(x) about
Xj giveS

Crg + ) O'j. (4)

The universality of crj follows that of the period-
doubling fixed point. We show the numerically deter-
mined TSF for the logistic map in Fig. 3 (solid line)
which converges after several bifurcations (-7). Note
that the size of the steps of the TSF depends on the sta-
bility of the orbit. Figure 3 corresponds to a superstable
orbit. By Eq. (4) we can extend the TSF to the continu-
um by defining o(x) on the interval l0, —,

' ] as

o(x) =oJ for j/N &x & (j+1)/N (s)

This o(x) is piecewise constant, with discontinuities at
rational x =n/2 for n odd, the size of the discontinuity
decreasing in magnitude geometrically with increasing
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FIG. 3. The trajectory scaling function determined from the
experiments (circles for the diode resonator, crosses for the
Rayleigh-Benard system) and numerically (solid line}. The
fluctuations of the experimental points are comparable with
those for the 2 cycle obtained from the logistic map.

m. The lowest-order approximation to the TSF for
period doubling is

atr(0), 0&x & —,',

where cr(0) =3.909. . . and a =2.501. . . is the rescaling
factor of the period-doubling renormalization group.
Thus the ratio of the averages of the first and last half of
the TSF will be an estimate for the rescaling factor.

If cr(x) is known, the first Nl2 points of the orbit
determine the rest by Eq. (1). In this sense the TSF
reconstructs the attractor.

An experimental time series is nearly an M cycle if it
makes close return after M points. If we embed in
enough dimensions, the converse is true as well: Any
close return lies near an exact periodic point of the un-
derlying iterated map (i.e., there are no accidental cross-
ings). We exploit this result to reduce the noise in the
experimental signal. ' For fixed e (typically 10 -10
times the signal amplitude) we collect those points x,
such that ! xM+t —x&! & e. The points bunch into
discrete domains of diameter ri (typically 2e), each cor-
responding to a periodic point which we locate at the
center of the bunch. This averaging also reduces the
effective noise by approximately /Nb, where Nb is the
number of points in the bunch. We denote the periodic
points by the circles in Fig. 2. An experimental signal
will generally have higher-order multifurcations in addi-

tion to the 2" cycle, e.g. , K82". In this case we estimate
the 2" cycle by averaging over y„yf+~, . . . ,yf+]5g
within the bunches.

We determine eigenvalues of the periodic cycles by
studying the evolution of the bunch of points correspond-
ing to a point on the cycle. ' The noise is lowest for ex-
perimental signals with small largest eigenvalues. The
results presented here were taken from orbits with larg-
est eigenvalues between —0.15 and 0.15 which corre-
spond to superstable orbits of the logistic map.

In Fig. 3 we denote the values a(x) obtained from the
diode experiment (averaged over several different runs)
by circles, and the corresponding values from the 2 , '&

cycle for the Rayleigh-Benard experiment by crosses.
The agreement with the theoretical TSF is good. Most
of the discrepancy between theory and experiment is due
to the incomplete convergence of the TSF at third and
fourth order which results in deviations in the theoreti-
cal values comparable to those seen in the experimental
signal.

We define the rescaling factor for period doubling, a,
to be the ratio between the averages of the first and
second halves of the TSF. The value we obtain from the
experimental data is 2.52~0.05 which compares well
with theoretical values of 2.501. . . .

Next we analyze data from the Rayleigh-Benard sys-
tem near the transition to chaos via quasiperiodicity at
the golden mean. ' ' Recall that the golden mean is ap-
proximated by the Fibonacci ratios F„~/F„(where F„ is
the nth Fibonacci number). We study periodic orbits
with winding numbers close to crG, in this case the orbits
of length F„. As in the period-doubling case, x;, and
x'+F, are nearest neighbors, and x; and x;+F, next
nearest. We define the TSF for the F„cycle to be'

X) X)+Fn-2

X) X) +F

XJ XJ+F„2

X) X) —F„

(7)

We present the o& obtained numerically for a one-
dimensional (critical) circle map. As in the period-
doubling case, o~ and the first F„~ data points deter-
mine the rest of the attractor. The TSF is piecewise con-
stant and has discontinuities at values ofj with a finite
continued-fraction expansion, (1,1, . . . , 1,0,0, . . . ), the
size of the discontinuities decreasing geometrically with
the number of nonzero terms retained in the expansion.
The discontinuities are larger than the corresponding
ones for period doubling because the rescaling factor a is
smaller. We extend the TSF to the continuum as before.

We denote the TSF evaluated from an experimental
cycle (averaged over several data sets) by circles in

Fig. 4. We find reasonable agreement with the analo-
gous curve for the sine circle map.

The chief information that we want to extract from an

541



VOLUME 61, NUMBER 5 PHYSICAL REVIEW LETTERS 1 AUGUST 1988

2.5—

funded by National Science Foundation Grant No.
DMR-83-16204 and by Materials Research Laboratory
(The University of Chicago) Grant No. 8519460.

0 (x) & s—

0 00.5—

I

0.2

I

0. 4

I

0. 6 0.8

FIG. 4. The trajectory scaling function for a 21 cycle from
the Rayleigh-Benard experiment (circles) compared with the
numerical result (solid line).

experimental data set is an unambiguous identification of
its universality class. In experimental systems with

many degrees of freedom, this identification is difficult;
hence we wish to check the details of the transition in the
most thorough way possible. We believe that the TSF
contains the most complete compact encoding of the
universal behavior of the transition. However, because
of its sensitivity to noise, it is hard to determine the TSF
from experimental data. Nonetheless, we can calculate
the TSF by defining it correctly and by averaging the ex-
perimental data to reduce the effects of noise.

We are currently analyzing time series from intermit-
tent and strongly chaotic data sets from the Rayleigh-
Benard experiment. 2o However, instead of examining
the entire attractor2'22 we intend to determine only the
periodic points (which in this case are unstable) and
their eigenvalues, since these points contain all invariant
properties of the dynamical system.
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