
VOLUME 61, NUMBER 5 PHYSICAL REVIEW LETTERS 1 AUGUST 1988

Canonical Quantum Field Theory with Exotic Statistics

Gordon W. Semenoff
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada V6T2A6

(Received 12 May 1988)

An explicit example of a three-dimensional quantum field theory with exotic statistics and fractional

spin is presented.

PACS numbers: 11.10.Ef, 03.65.—w, 05.30.—d

If particles are not allowed to have coinciding posi-
tions, the configuration space of a two-dimensional gas
has nontrivial first homotopy group. As a result the
many-body wave functions, which must be single valued
on the covering space, can be multivalued functions on
the configuration space itself. This allows wave func-
tions for identical particles to change by a phase when

particle positions are interchanged and it is therefore
possible that two-dimensional quantum mechanics exhib-
its many-particle states with exotic exchange statis-
tics. '

Intimately related to exotic statistics is fraction-
ally quantized angular momentum. The spin generates
the covering group R ' of the rotation group SO(2) and
can therefore have fractional eigenvalues.

Fractional statistics have been argued to play a role in

several phenomena in condensed matter where dynamics
are efl'ectively confined to a plane. Most notable are the
fractionally quantized Hall effect6 and the behavior of
vortices in superfluid helium films. They have also been
conjectured to be of importance in two-dimensional anti-
ferromagnets and in the magnetic properties of the lay-
ered copper-oxide materials which exhibit high-temp-
erature superconductivity. ' In this Letter I shall ex-
amine a concrete realization of exotic spin and statistics.
The idea is to modify a three-spacetime-dimensional field

theory which has a conserved U(l) current by the addi-

tion of minimal coupling to an Abelian gauge field and a
Chem-Simons term ".

S=S,tt„+ d x AJ "+ e""A„a,Ai .
4 4z

Previous evidence for fractional statistics in this model
comes from spacetime arguments: For the currents due
to the motion of classical charged particles the effective
action obtained by the solving of the equation of motion
for the gauge field in (1),

gives the linking number of the trajectories. ' For a sin-
gle particle the effective action is the torsion of the tra-
jectory which, for a=1, Polyakov' has argued can be
represented by fermionic variables. Furthermore, the
modification (1) of the O(3) nonlinear cr model gives the
Hopf term which is related to the linking number of soli-
ton trajectories. ' In the following I show that (1) is
equivalent to the model without the gauge fields and with
multivalued charged operators which have graded com-
mutators and create quantum states with fractional
statistics. Let us begin with the prototype of a charged
scalar

S = I'd'x [(a„+tA„)q*(a" tA")p m— p p+—(a/4n) e"""A„a„A].

To implement canonical quantization we identify the momenta

n=(ap iAp)y, tr'—=(ap+iAp)y',

ttp = 0, tt; —(a/4tr) et' Al = 0.

Here and in the following the modified equal sign (= ) indicates a constraint, i.e., a relation which eliminates dynami-
cal variables from the phase space. The Harniltonian is

H= d x[tt*tt+p*(a+iA) (a —iA)p+m p*p —A [jo+(a/2 )8]], (s)

where jp=i(p tt —tv*a) is the charge density. Conserving the first-class constraint ttp=0 yields the secondary con-
straint

jp+ (a/2tt) 8 = 0,

where 8 =e;J a;Al is the magnetic field. This constraint is responsible for fractional statistics. With (4) we recognize
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(6) as the generator of static gauge transformations.
Gauge invariance therefore requires that magnetic flux is

associated with charge density wherever the latter is

nonzero. Bohm-Aharonov phase factors for the motion
of charges in each other's magnetic fields account for the
changes of phase of wave functions as trajectories of par-
ticles link with each other. We complete the constraints
(4) and (6) by imposing the gauge conditions 30=0,
8 A=O. These, together with (4) and (6) determine
the gauge field:

multivalued operator,
fO

A(x) = —8(i/a) d ye(x —y) jo(y),

where e(x —y) is the angle between the vector x —
y and

the x 1 axis. The interaction terms can be removed from
the Hamiltonian by the gauge transformation

p(x) =exp (i/a) d ye(x —y) jo(y) p(x),
(sa)

~(x) =exp (i/a) d ye(x —y)jo(y) n(x),
3;(x) =—ei) d'y ' ', jo(y)a "" (x —y)

(7)
j*(x)=y~(x)exp —(i/a) d y e(x —y) jo(y)

(8b)

The Hamiltonian takes the form

(loa)

and the Hamiltonian is given by (5) with Ao set to 0, A
set to A and with the canonical Poisson brackets
I (x) x*(y)j =[&*(x)x( )j =6 (x —y). In the quan- x (x) =z*(x)exp —(i/a) d2ye(x —y)jo(y) .

turn theory A and p do not commute and we must speci-
fy an operator ordering for the Hamiltonian. We use the
convention already implicit in (5) that covariant deriva- H=„b z+ 8 8$+m2$ pj (9)
tives of p, z operate from the right and of p*,x* operate
from the left. The gauge field (7) is the divergence of a and p and ri obey the graded equal-time commutation re-

I lations,

j(x)j(y) —e "i'"j(y)j(x) =0, j*(x)j(y) —e "i'"j(y) j'(x) =0,

p(x)z*(y) —e 'i'i z*(y)p(x) =i8 (x —y), p(x)z(y) —e ('i' x(y)p(x) =0, (10b)

with d, =6(x —y) —e(y —x) =rr+2n (integer). Multivaluedness of the phase 6 is essential to consistency of the com-
mutation relations (10). Many-particle states created by repeated operation of p(x;), p (yj) are multivalued functions
of [x,j, [yj}. [The products of operators in (8) are singular and must be defined with a regularization such as point split-
ting. In general, the commutators in (10) are insensitive to the regularization. ] The equation of motion for p is
8„8"p =0. This indicates a dual description of the field theory (2): (i) single-valued fields with complicated interac-
tions and Hamiltonian (5); (ii) free fields with multivalued operators and explicit fractional statistics.

To examine the connection between spin and statistics, consider the gauge-invariant symmetric energy-momentum
tensor

T„,=(8„+W„)q*(8, i~„)q+(8„+i~„)q'(8„ i~„)q g„„[(8,+i-~,)q'(8' i~')q m-'q'q]. -
The integrated energy density f Too is the Hamiltonian (5). The momentum density is To; =x 8;&+8;&*++A;jo.
This gauge-invariant operator generates a translation of the gauge-variant field p accompanied by an A;-dependent
gauge transformation so that in the classical field theory the resulting transformation is gauge invariant 8;p(x)
={p(x),f d y To;(y)j =(8; —iA;)p( )x. Similarly, the angular momentum operator L =fd xx;e;~Tol generates a
gauge-invariant rotation of p. On the constrained classical phase space we replace A by A:

P; = d x(x 8,p+8;p*z)+ — d xd yjo(x)e;, jo(y) = d x(x" 8;p+8;p z),
fO

L = d'x(z xx8y+xx8$ z)+ — d xd y jo(x) Jo(y)
(x —y) '

(12)

where Q =fjo. In (12) and (13) we have used the sym-
metry of the integration in the last terms. When the
constraints are imposed, the covariant momentum is

identical to the canonical translation generator, whereas
the covariant angular momentum is the sum of the
canonical angular momentum and a term proportional to
the square of the charge. We interpret the latter term as
a spin operator. It cannot be removed by redefinition of

d'x( *xx8y+xx8y*~)+Q /2a,

!
the angular momentum since it is required that I.
satisfies the Lorentz algebra [K;,Kij =e;JL, where E; is
the boost generator. At the classical level, p and z have
operator-valued spin, 8p = [p, Lj =x x 8&+ (Q/a) p. This
anomalous spin was previously noticed by Hagen" who
also correctly observed that in the corresponding quan-
tum field theory the operators p, p*, x, and sr* create
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single-valued states.
In the quantum theory we must take into considera-

tion the ambiguous ordering of operators in To;, as well

as singularities of operator products. In general this pro-
duces additional terms in the quantum versions of (12)
and (13). If we take the same operator ordering conven-

tion in To; as we used for the Hamiltonian, then in terms
of p and tr" the momentum, angular momentum, and

boost operators are

L =„(tr x&&8/+xx 8$ tr),

With the graded commutation relations (10) and the
Hamiltonian (9) these obey the Poincare algebra. Fur-
thermore tt represents the rotations faithfully e' p(x)
xe ' =it(A(8)x). The state Q1 p(x;)Q1"p(yj)
x

~
vacuum) is multivalued with canonical scalar spin

parity. (Spin parity is the change in phase of a quantum
state under rotation by 2tr. ) In terms of the complex
variable, z; =x;1+ix;2, the multivaluedness can be
characterized by the familiar form

teresting to develop a theory of quantized solitons with

fractional statistics from this point of view.
The present construction can be viewed as progress to-

ward a generalization to three spacetime dimensions of
the boson-fermion equivalence' in two dimensions
where creation operators for solitons are used to obtain
states with Fermi statistics in a purely bosonic field

theory. It is also in line with the ideas of Rajeev, ' who

argued that nontrivial projective representations of four-
spacetime-dimensional current algebra are responsible
for the Fermi statistics of skyrmions. Vertex operators
which have graded commutation relations in two space
dimensions have previously been constructed by
Murthy. ' Though the precise relationship of his opera-
tors with p, tr is as yet unclear, my construction can be
regarded as a concrete realization of some of those ideas.
It remains for us to examine the renormalization of the
model (2). Since a is dimensionless the interaction in-

troduced by the Chem-Simons term is strictly renormal-
izable. In particular, it would be interesting to estimate
the a dependence of the partition function.

This work is supported in part by the Natural Sciences
and Engineering Research Council of Canada.

Q~ p(x;) ~
vacuum)

=Q; ~l (z; —zj ) 'l'x (single-valued state).

Alternatively, the state Q1 p(x;)Q~" p (yj) ~
vacuum) is

single valued but has fractional spin parity —(tr/a)
&& (m —n ) (m —n+ 1

—2qo), where qo is the vacuum

charge. Also

e'"y(x)e '"=e"&"y(A(e)x)

is a projective representation of the rotations with oper-
ator-valued phase.

The present results can be applied to field theories
with other types of matter-nonrelativistic Schrodinger
fields or fermions. Another interesting application is to
the O(3) nonlinear o model where in (1) we would set

&,tt„=f 2 8„n'r)"n' with g( n'n' =1 and take

j"=(I/8tr)e"' e,b, n'B„n~8&n'

as the topological current. The solving of the equation of
motion for the gauge field in (1) leads to an effective ac-
tion which is the nonlocal Hopf invariant with coefficient
I/2a. It is already known that the angular momentum
in this case has the same form as (12), L =L„«„,„1
+Q /2a, where Q is the soliton number which is quan-
tized as integers. A single-valued operator U(x) which

creates a soliton x has fractional (operator-valued)
spin. (Since [Q,U] = —U. ) The multivalued operator
exp[i/a fej ]U(x) creates a soliton with a multivalued
wave function and is a rotation scalar. It would be in-
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