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Average versus Typical Mean First-Passage Time in a Random Random Walk
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Random walk in a one-dimensional random medium of length N is analyzed. It is rigorously shown

that in most realizations of the medium, the mean erst-passage time, t, bears the following relation to 1V,

for large N: logt~ JN Th.e average of t over the realizations of the medium, (t), satisfies log(t)cLN.
Our formalism, though being exact, employs only elementary means and makes transparent the physics
of the delay experienced by the random walker: It is due to the existence of subsegments in which the
bias against motion towards the desired end is largest. Some implications of these results concerning the
replica method are briefly discussed.

PACS numbers: 05.40.+j, 05.60.+w

The transport properties of random media are crucial-
ly diferent from those in homogeneous or periodic
matter. ' A large portion of the transport properties in

random materials is usually coined anomalous. 2 There is

no general theory for anomalous transport, perhaps be-
cause no single theory can encompass the full richness of
the phenomena involved. Special attention has been
drawn to one-dimensional models. The latter can be
used as mathematical constructs exhibiting anomalous
transport; they are useful in modeling higher-dimension-
al dilute networks. An interesting one-dimensional prob-
lem, known as the Sinai problem, has been considered

by many investigators. " The problem is one of a ran-
dom (discrete) walk on a one-dimensional lattice,
—~ &j & ~ (j being the integers). At each site, j,
there is a probability pj to hop to site j+1 per (discrete)
time unit and a probability qj =1 —pj to hop to site

j—1. The set fpj] consists of independent random vari-
ables satisfying 0 & p, & l. A probability distribution for
the values of {pj] is defined so that log(pj/qj) has zero
mean (i.e., no average bias) and a finite variance cr . A
realization would be a choice of the values of the pj' s.
Various methodss " have been used to show that the
mean-square displacement of a walker in such a system
is proportional to (logt), t being the time. The proba-
bility distribution of such a walk has also been con-
sidered.

In the present Letter, we consider the mean first-

passage time (MFT), l, from site j=0 to site j=N. The
hopping probabilities pj are defined as before except at

j=0, where qo =1 —po is a waiting probability per time
unit. We set out to show that logt ~ JN for typical reali-
zations, whereas the realization averaged MFT, (t),
satisfies log(t) ~N for N &&1. Thus averaged quantities
are atypical. The possibility of nonself averaging in sta-
tistical systems has been realized before. '

The method to be used below has been described in

detail in the literature' ' (an alternative method, '

based directly on the solution of the master equation

N —2 pJ2
To,iv(z) pN IzII—

j=0 i+ I,N(Z I

Arguments similar to those leading to Eq. (1) yield

GpN(z) =[I qoz QoN(z)] TpN(z).

A recursion relation for Q; N is similarly derived:

(2)

(3)

pi qi+1~
1 i+I,N z

(4)

Obviously QN —
I N(z) =0. In what follows, we denote

describing the above random walk yields equivalent re-
sults). Assume a given realization of the set fpj]. Define
the following probability distribution functions': (1)
T; J(n): the probability to leave site i on the first step
and reach site j, for the first time, following n time units,
in which i was never revisited. (2) Q;, (n): the proba-
bility to move from i to i+1 on the first step and return
to i, for the first time, after n time units, without ever
reaching j. (3) G; J(n): the probability to leave i and
reach j, for the first time following n time units (return-
ing to i is allowed). The generating function correspond-
ing to any probability distribution function, D(n), is
defined as D(z) =g„-oD(n)z". The generating func-
tion, for moving from j to j+1 in one time unit is pjz.
The generating functions T; N (z ) satisfy the following
recursion relation:

T; N(z) - '
Tt+I N(z),

ptz
1 i+ I, iv z

0~ i'~N —1.

This is because in the walk (subject to the restrictions
in the definition of T; J ), one has to move from i to
i + 1 (explaining p;z ), then one can move from i + I

back to i without reaching N [corresponding to
(1 —Q;+I N) '], and finally one has to move from i+I
to N without returning to i+1. Noting that TN I N(z)—
=pN-Iz, one obtains from Eq. (1),
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A (z =1)=A for any function A (z) and A'—:(dA/
dz), -l. Obviously, GON=1 (since the probability to
ever reach N is unity). The MFT, t, is (d lnG/dz), -l, or
GON. Hence, from Eq. (3) [and with use of Eq. (4) to
simplify the result],

qo+ Qo, N
" ' Q,NQ'+ l, N

t =N+
1 —

qo
—

Qo, N i 0 p;q;+l

It follows from Eq. (4) that

N 2k-—l Q2
Q', =2Z II '

Qk,
k i j 1 pjqj+1

(5)

(6)

N m —
1 m —

1 m —
1

"+2N+2Z Z II"+II"
po m 2r 1 k rqk k rPk

(9)

Substituting Eqs. (8) and (9) in Eq. (5) one obtains an

upper bound for t. Define now x(a, P) =Qg-, q /p,
then the following inequality holds:

«4N+4Z[~(a, P)+~ '(a,P)l, (10)

where the sum is over all intervals [a,P] e [O,N]. For a
given realization, let M denote the maximal value of
ir(a, P) and x '(a, P). The number of segments [a,P]
(P~ a) is (N+1)(N+2)/2, i.e., smaller than N .
Hence, t & 4N+4N2M Define g; =log(p. ;/q;). The
quantity logic(a, P) =Pt', (; is a displacement in a one-

When k —
1 &i, the product in Eq. (6) is to be re-

placed by 1. The same convention holds below as well.
As a last preparatory step, we wish to find Qo N. Let Kj
be the probability7 for a walker starting at j (0~ j~ N) to reach 0 before reaching N. Obviously, K0=1
and KN=0. The quantities Kj satisfy the master equa-
tion Kj =pjKj+l+qj+lKj-l. Solving this equation with
the above boundary conditions, we find

N r —
1

K, =I- Z P' (7)
r~lj 1 pj

Clearly, Qo N =poKl. Since p; =Q; N+ T;,N (after leav

ing i to the right, one either reaches first N or first re-
turns to i) We h. ave Q; N ~ p;. This inequality can be
used to obtain further bounds. If we use Eq. (6) and the
above inequality,

Qi, N Qi + I,N Z ~ pr

P;q;+1 m i+1 r i+1q,

Similarly, using Eqs. (6) and (7) one obtains

"Q'" ="+2Z Z rr"rr"""
qo QO, N Po m lr l n lj lqn Pj

Performing the double summation one finds

qo+ Qo, N

1
—

qo
—

QO, N

Altogether, we find that for every e & 0

Prob [max b(a, P )

+ ir '(a, P) ] & exp(N ' '+')I & k/N',

where k is an O(1) constant. Hence,

Prob[t & exp(hN' +')] & k/N',

where h is an O(1) constant. We have thus shown that
t &exp(hN'j +') with a probability larger than 1

—k/
N'. Next, we compute a lower bound for t. It is easy to
see from Eq. (5) that

t& (»)
1
—

qo
—

Qo, N

Using GON =1 and Eq. (3), we see that the right-hand
side of Eq. (11) can be rePlaced by qo/To N. It now fol-
lows from Eqs. (3) and (4) that

1
—

qo
—

Qo, N

N —2
1 Hj~o p, q, +l

To,N II/:0 pkII:(Q, N
. (12)

Since Q N &p, as shown before, we find, using Eqs.
(11)and (12)

N —
1

t& U
'.

j-o pj
(13)

Consider now a segment of length SN, composed of S
subsegments of length N each. The [p,j (a=0, . . . ,
SN) are chosen from the same distribution as before.
Define tk to be the MFT to go from j=kN+1 to
(k+1)N. Obviously, t~Pg:iItk Using E.q. (13) in

each subsegment, we find

S—
1 (k+1)N

t&Z II
k oj kN+1 pj

(14)

The S products in Eq. (14) can be regarded as S in-

dependent random variables. The probability that at
least one of the products is larger than ex [(SN)'j ']
is comPuted as follows. Let gk =Pj"-+k'+llog(qj/Pj).
The variables gk have zero mean and a variance of No .
Their distribution approaches a normal distribution, as
N~ ~, by the central limit theorem. Hence

Prob(gk & x) = —,
' [1+erf[x/(2N) ' ol].

Let Pt be the probability that at least one of the gk

501

dimensional random walk, whose statistics is that of the
( s. The maximal value of loge in a segment is smaller
than twice the span' of the walk (in N steps). The
probability distribution for such spans is known. ' Using
it, we find Prob[max(loge) & N'j +'] & c/N' for every
e&0; c is an O(1) constant. Define rt;=log(q;/p;). A
similar calculation yields

Prob[max(loge ') & N'j +'] & cl/N'.
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(I l ) (q/p) =exp(N log(q/p) ), (IS)

where (q/p) is the realization average of qi/pj. It is easy
to show that (q/p) & 1 [based on (log(q/p)) =0]. A

second inequality is obtained by our noting that

p . . 1V-1

II '+"
U

'+"
) -c p) q) )-0 p)

A similar inequality holds for x . Hence, from Eq,
(10), we obtain for every realization

8—
1

4N+4N'II q'+~' .)-o, pj qj,
Averaging over realizations, we find (t) (e", where

X=[((q/p)+(p/q))] & 1. Both above bounds for (t) can

be further improved, but there is no need if all we want

to show is that log(t) ~N for large N. This result should

be contrasted to the typical behavior logta: JN. The
reason for this difference is in the fact that very long

mean first-passage times have low probability but con-

tribute significantly to the average over-all realizations.

Interestingly, the use of the replica method '7 to analyze

the Sinai problem which involves averaging over all real-

izations leads to the typical result and not the averaged

one.
A simple model, which is a toy version of the above re-

sult, will serve to understand the success of the replica

method: Let X be a random variable assuming two

values: e', with probability (1 —e ) and et' with

probability e +, where N»1. Obviously, the typical

value of X is e', whereas the average value, when

P&1, is approximately e(~ ', which is atypical. The

average of X", for small enough positive n, is easily seen

to be approximately e"', thus corresponding to the

typical result. Similarly, the average of logX is dominat-

ed by the typical result.
In the realm of statistical mechanics, consider a prob-

lem in a random system having N dynamical degrees of
freedom (e.g. , N spins with random couplings). Let

p(a) be the probability that the free energy, F, per de-

gree of freedom takes on the value a. Let Z=e F be

the corresponding partition function (the temperature
factor is absorbed in F). The average of any power, n,
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exceeds J2(SN) 'i 'a. It follows that

Pl =1 —( —' ) [I+erf(S' 'N ')'1.

Choosing NS»S'~ ', we obtain PI=1 —( —,
' ) . For

sufficiently large 5, it follows that Pt 1. Since e can

be chosen to be arbitrarily small in the above derivation,

it follows's that r ~e with a probability approaching
unity as N 00 [A is an O(1) number]. The main con-

tribution to the MFT is thus due to a subsegment which

provides the largest bias motion to the desired endpoint.
Next we turn to computing the realization averaged

MFT, (t). It follows from Eq. (13) that

of Z is (Z") =fp (a)e ~"da.
For large values of N, the above average is a result of

the competition between the "tendency" of e " to
prefer large negative values of a and the fact that p(cr)
may be vanishing for too large such values. It is easy to
construct models in which (Z") is dominated by atypical
values of a. When N is kept fixed and n is allowed to go
to zero, (Z")=1 Nn—fop(o)da, thus obtaining a result
pertaining to the typical values of a. We conclude that
averaging of a free energy, or using the replica method
amplifies the contribution of the typical configurations,
which are not necessarily those having the lowest value
of the free energy (as a function of the random parame-
ter). Further discussion of this point is left for a future
publication.
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