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Universal Jump of Gaussian Curvature at the Facet Edge of a Crystal
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Novel universal behavior of the equilibrium crystal shape is reported: The Gaussian curvature, a
product of two principal curvatures, assumes a universal jump across the facet contour at any tempera-
ture below the roughening temperature. This behavior is shown to be a consequence of a universal rela-
tion between the coefficients r, and B in the small-p expansion (p is the surface gradient) of the inter-
face free energy, f(p) =f(0)+r, I p I +BI pI +0(I pI ). Both exact results on a solvable model and
Monte Carlo calculations support this behavior —universal Gaussian-curvature jump at the facet edge.
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Two universal features are known for the "shape tran-
sitions" of the equilibrium crystal shape (ECS). One
is associated with the faceting transition ' at the
roughening temperature TR. Across Ttt the curvature tc

of the ECS assumes a ftnite jump whose amount is

universally given by Ate=(2/tr)k/kttTtt (the parameter
A, , which will be used throughout this Letter, corresponds
to the Lagrange multiplier appearing in the Wulff con-
struction and is related' to the pressure difference hP
across the interface or to the chemical potential
difference hp). The other is associated with behavior of
the ECS near its facet edge below TR. Let us take a
Cartesian coordinate system such that the x-y plane is

parallel to the facet with the origin at the center of the
facet. The ECS is described by an equation z=z(x, y).
The profile of the curved region along the x axis, then,
behaves3 as z —(x —x, ) I (x )x, ) near the facet edge
x =x, . This implies the square-root divergence of the
longitudinal curvature x.„-dz/dx —(x —x, ) 'I, with

the exponents —', and —
—,
'

being the universal values for
Gruber-Mullins-Polrovsky-Talapov' " type transitions.
These two universal features of the ESC, one at TIt and
the other at the facet edge below TR, are now at the
stage of experimental confirmation. '

In this Letter, we report another novel universal be-
havior of the ECS, which is to be seen below TR. At the
facet edge, the Gaussian curvature K, which is a product
of two principal curvatures [-(d z/dx )d z/dy, if the
x or y axis is parallel to the crystal axis], jumps from 0
(on the facet side) to a finite value ' hK (on the side of
the curved region) with universal amplitude given by

Interestingly, as compared with the known universal

jump ktsTtthtc/k=2/tr at TR, we see a factor of 2
difference between Atc and (dK)'I . This newly found
feature of the ECS is universal in the sense that it is to
be observed for any systems with short-range interac-
tions, at any position on the facet contour, and at any
temperature below Tit.

By r(p) we denote the orientation-dependent interface
tension, where p =(p t,p2) =(Bz/Bx, Bz/By) is the inter-
face gradient vector. The interface free energy per pro-
jected area is given by f(p) = r(p) (1+ I p I ) ' . To dis-
cuss the ECS near the facet edge which is governed by
small-p behavior of f(p), we consider a vicinal surface
with step density I p I

(we take the unit step height to be
unity) below Ttt. In systems with short-range interac-
tions, we have the following expansion

B(g) =n2(kBT) 2/[6[r. (g)+B2r. (g)/Bg2] (3)

In fact, assuming relation (3), we obtain (1) as follows.
Working with the Legendre-transformed free energy

f(p) =f(0)+ r. (g) I p I +B«) I p I
'+ o( I p I

'), (2)

where g is defined by pt = —
I p I cosg, p2 = —

I p I sing.
Physically, g is the angle between the y axis and the
direction along which, on average, step lines are running.
In the limit IpI 0, g becomes the direction angle of
the tangential line of the facet contour (Fig. 1). The
coefficient r, (g) in (2) is the per-length step free energy,
and the cubic term represents the effect of step-step in-
teractions. The essential point of our argutnent for (1) is
that there exists a universal relation between B(g) and
the "step stiffness" r, (g)+ r,"(g),
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Substituting (2) into (4) and taking I p I 0, we have a
limiting value of K approached from the curved region,

K =) '/[6a(8) [y, «)+&'y. (»/tl8']] (I p I
—o).

(s)

facet curved surf ace

FIG. 1. Left: Top view of a facet, where 8 is the direction
angle of the tangential line of the facet contour at a point P.
Right: Magnified view of the curved surface near the point P.
The angle 8 corresponds to the mean running direction of the
steps on the surface.

f(rt) min&[f (p) —
rt p] which gives ' the ECS as

Xz f( —kx) [x=(x,y)], we calculate the Gaussian cur-
vature K to be

K=~'(I+IpI') '

x Idet[8 f(p)/Bp; Bp, ]] '
I t -) („)-)(-~,). (4)

H =Lf(0)+ dx pat(x)a(x)+-
~L a tlat(x) 8a(x)

40 2 8x tix

—=Lf(0)+pN+Htt,

where af(x) and a(x) are spinless fermion operators, N
the particle number operator, and Htt the kinetic-energy
operator. The partition function Z„for the n-step sector
is expressed as

Z„=g(final);n I [exp( —PH)] I initial;n),

Inserting (3) into (5), we obtain (1).
We prove relation (3) by taking account of the non-

crossing nature of the steps and by careful treatment of
the coarse-grained step wanderings. Let us consider a
coarse-grained system of size L (x direction or space
direction) xM (t direction or time direction). The time
direction is chosen to be the mean running direction of
steps. Note that crossings of steps are virtually forbid-
den since they inevitably produce significant areas
of "overhangs" which are energetically unfavorable.
Therefore, we can regard the steps as continuous lines

describing space-time trajectories of Browian particles
with hard-core repulsion. In terms of the transfer-
matrix method, the system is equivalent to the impene-

trable Bose gas, which allows us to take the free fermion

approach. ' z Writing the transfer matrix for the
continuous system as exp( —PH) (P =1/kaT), we have

the following expression for the Hamiltonian H:

(6a)

(6b)

"starts" at (xo,0) (xo-L/2). The probability distribu-
tion function P(hx) for finding the end point of the step
at (xo+hx, M) is known to be Gaussian, P(b,x)
-exp[ —(Ax) /2Mcr (8)], where cr(8) is calculated
from (6) as

where the sum is over all possible initial and final
states of n particles. The free energy cr'(8) =Pa. (9)

f(p) = — lim (kaT/LM)lnZ„,
L M~oo

with fixed particle number density I p I =n/L, is given

by the energy density of the ground state (Fermi vacu-
um):

f(p) =f(0)+u I p I
+a(n'/6)

I p I

' (7)

Comparing (7) with (2), we have the identification3o

p = y, (8), an't'/6 =B(8),

which means that p and a are not microscopic parame-
ters but are macroscopic quantities due to the coarse
graining. Further, inspection on the "one-body" problem
leads to a relation between p and a. Suppose that there
is only one step on the x-t plane. We specify the space-
time position of the step by the coordinates (x, t)
(0(x (L, 0 ~ t ~ M) and assume that the step

We should then recall a relation '

o(8) '=P[y, (8)+y,"(8)], (10)

8(0) =k T
6 Z'(0)''

where we have regarded o(8) as the scaled fluctuation
width of a one-dimensional interface. Combining (8),
(9), and (10), we obtain the desired relation (3).

Let us see that, for a given value of 8, the relation (3)
actually holds for an exactly solvable model, Beijeren's
body-centered-cubic solid-on-solid (BCSOS) model
which is a special case of the six-vertex model (Rys's F
model). We denote the excitation energy of the F model

by J and introduce a parameter co (~ 0) by 2coshto
=exp(2J/kaT) —2. For 8=0, i.e., along the crystal
axis of the BCSOS model, we have

425



VOLUME 61, NUMBER 4 PHYSICAL REVIEW LETTERS 25 JULY 1988

0.5

0.4—

0.3 = 1
ohio

15'

0. 2—

O. t—

0

(30

po 0 QQ
oO

I 0 i(

0.6
I

0.7

FIG. 2. Monte Carlo results on the absolute SOS model in a
field with system sizes 54&54 (squares) and 80&80 (circles)
for kaT/ J =0.7. Gaussian curvature E of the normalized ECS
(1. 1) along the x direction is calculated as a function of the x
coordinate [ (field strength)/Jl. Each point represents an

average over 1.8x10 Monte Carlo steps per site. From the in-

terface tension of the two-dimensional Ising model, the facet-
edge position is approximately estimated to be x, =0.66. Be-
cause of the finite-size rounding, the expected discontinuous
change of K is somewhat smeared out. The calculated value of
kaT JK at x, is slightly smaller than, but consistent with, the
universal value 1/z (=0.32). A clear tendency is seen for in-

creasing system size to lead to better agreement with the pre-
dicted behavior.

where the function Z(p) (~ rt
~

~ 2ro) is defined as

Z(4) =ln
cosh —,

' (ro+4)

cosh (ro p)

( —1)"e '""sinhn4 (12)
n 1 n coshro

We should remark here that the shape of the facet con-
tour is a two-dimensional ECS which is determined
from y, (8) regarded as a one-dimensional anisotropic in-

terface tension. Then we can calculate the step stiff'ness

y, (8) + y,"(8) from the curvature of the facet con-
tour. From the equation for the facet contour

)jx = —krrTZ(ro+p), ky = —krrTZ(p),

we obtain step stiff'ness for 8=0 (i.e., y =0, p =0) as

(13)

(p)+ ll(p) d (Xx)
d() y)'

=k T
Z "(ro)

(14)

Combining (11) and (14), we confirm the relation (3)
and the universal Gaussian-curvature jurnp (1) for 8=0.

As a test for (1), we performed Monte Carlo calcula-
tions on the absolute SOS model with coupling con-
stant J (kBT(t/J=1. 24 ) under the free boundary con-
dition, where an external field is applied to maintain the
average tilt. The "fluctuation-geometry" relation al-

low us to evaluate the curvature tensor of the ECS from
the correlations among the gradient fluctuations fop;I
(i=1,2). We calculated the Gaussian curvature for the
"normalized" ECS with 1.=1, along the x direction. In
Fig. 2, we have plotted krrT JK vs x [in Fig. 2 x is (field
strength)/JJ for krrT/J=0. 7. The facet-edge position is
estimated from the interface tension of the two-
dimensional Ising model, ' regarded as the approximate
step free energy. The results are consistent with (1).

To summarize, we have shown that there occurs a
universal jump of the Gaussian curvature at the facet
edge of a crystal at all temperatures below Trr. We have
presented an argument based on the terrace-step-kink
picture of the vicinal surface, taking account of the
short-range repulsive (impenetrable) nature of the step-
step interactions and the correct coarse-grained fluctua-
tion property of a single step. The novel universal behav-
ior is confirmed both by exact results on the BCSOS
model and by Monte Carlo calculations on the absolute
SOS model.

As further confirmation, both experimental observa-
tions and theoretical calculations on other models are
welcome.

A full account of this Letter, including detailed calcu-
lations on the solvable models (generalized terrace-step-
kink model and the BCSOS model) and further Monte
Carlo results on the absolute SOS model will be pub-
lished elsewhere. 3
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