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Well-known variational principles for second-order erturbation
higher-order multi hoton

-or er pertur ation matrix elements are extended to
ip o on processes for atomic hydrogen. Numerical a l

h
' f h h dy rogen ground state provide results corn ara

tions, even near intermediate-st t
mparable to those of analytic calcula-

ia e-s a e resonances, yet without the corn lications
'

intermediate states. Extensions to multi hoton roc
p ica ions involved in summation over

ions o mu tip oton processes for many-electron atoms are dare iscusse rie y.

PACS numbers: 32.80.Rm, 31.15.+q

In calculatin Nth- d
'

g -or"er perturbation matrix elements
(N ~ 2), such as in higher-than-first-order Born approx-
imations, multiphoton processes, or higher-than-first-or-

er correlation effects, one always encounters the prob-

states. Use of the Dalgarno-Lewis procedure' reduces
t e problem formally to the solution of a set of N —

1

coupled inhomogeneous differential equations. However,
the accuracy of the numerical solution of these equations

While the use o
becomes an increasing concern as N bas ecomes arge.

accur
i e the use o variational principles to improve th'

curacy has been common for the calculation of many

is

second-order processes, such as, e.g. , r requency-
dependent dipole polarizabilities

' ' '
s or, more generally,

matrix elements of the Green's function, s their use for
ig er-t an-second-order processes (and for multiphoton

processes in particular ) has been rare.
Consider more specifically the case of multiphoton

processes, or which the numerical evaluation of the
Nth-order transition amplitude is the key problem in

e specia case of atomictheoretical calculations. For the sp
'

1 f
y rogen, numerical methods ' based on the Dal-

garno-Lewis procedure' have been complemented by a

number of analytic approaches. Some of these evaluate
t e secon -or er perturbative matrix element analytical-

1 . II I3 Ot1M 4-18

Coulom
employ analytic expansions of th

~ ~ ~

e

of hi her-
om Green s function, which permit th Ii e eva uation

o ig er-order perturbation matrix elements. The
numerical difficulties of the evaluation of multiphoton
transition amplitudes by these methods a
known 9, 15, 17,18nown. ' Furthermore, the often significant dif-
ferences between the predictions of even the analytic cal-
culations for atomic hydrogen do not augur well for ac-
curate theoretical calculations of h' h - d
or nonhydrogenic systems, although significant recent

t eoretical progress has been m d f lk 1'

10, 19,20
a e or a a i-metal

atoms and for rare-gas atoms
We present here a variational principle for the Nth-

or er multiphoton transition matrix element for a hydro-
genic system which addresses the major diffi lt
evalu ating higher-order amplitudes, namely, the summa-
ion over infinite numbers of intermediate states. Our

with res ect to
expression for such amplitudes is variat' lliona y stationary
wit respect to changes in the approximations to these
summations. Numerical applications of thi

'
ns o is vanational

met o to t e two- and three-photon ionization cross
sections for H 1( s) are presented and compared with the
ana ytic predictions of others. Extensions of tho e varia-

princip e to nonhydrogen systems for a number of
atomic processes are being develop d be, ut are only dis-
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FIG. l. Two- h-p oton ionization cross section (cm /W) of
H(ls) vs photon wavelengths (A) for photon energies below

the one-photon ionization threshold. Dashed curve circular
polarization. Solid curve, linear polarization.
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FIG. 2. Three- h-photon ionization cross section (cm /W') of

the two-
H(ls) vs photon wavelengths (A) f hs or p oton energies below
t e two-photon ionization threshold. D h do . as e curve, circular
polarization. Solid curve, linear polarization
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TABLE I. Two-photon ionization cross section (cm /W) of H(ls) for linearly polarized light below the one-photon ionization
threshold.

CT' Kl GT' LDFJR KV' cp' Kag Present

975 5.152x 10
1020 6.752 x 10
1100 4.013x 10 4.049 x 10
1200 6.303x 10 5.803x 10
1300 1.276x10 1.283x 10
1400 8.450 x 10 8.453 x 10
1600 9.154x 10 9.143x 10
1700 1.025x 10 1.024x 10

5.522 x 10
4.049 x 10
5.803 x 10
1.283 x 1 p
8.453 x 10
9.143 x 1 p
1.023 x 10

4.923 x 10
7.080 x 10
4.035 x 10
6.417 x 10
1.277 x 1 p
8.470 x 10
9.182 x 10
1.028 x 10

6.773 x 10
5.522 x 10
4.049 x 10
5.803 x 10
1.283 x 10
8.453 x 10
9.143 x 1 p
1.p24 x 10

7.08 x 10

6.42 x 1P

4.91 x 10
7.p9 x 1Q

4.00 x 10
6.42 x 1 p
1.27 x 10
8.45 x 10
9.15 x lp
1.03 x 10

4.975 x 1 p
7.154x 10
4.024 x 10
6.441 x 10
1.276 x 10
8.451 x 10
9.153x 1Q

1.025 x 10

'Chan and Tang, Ref. 12.
Klarsfeld, Ref. 13b.

'Gontier and Trahin, Ref. 8.
Laplanche et al. , Ref. 15.

'Khristenko and Vetchinkin, Ref. 16.
Chang and Poe, Ref. 9.

gKarule, Ref. 14b.

cussed briefly here.
In lowest-order perturbation theory, with use of the electric-dipole approximation, the ionization cross section for

transitions from the initial hydrogenic (bound) state
~
nl) to the final hydrogenic (continuum) state

~
EL) by N polar-

ized photons may be expressed in terms of the following radial matrix elements:

P(ll, l2, . . . , llv ~, L ~
hco) =(EL

~
rlE„+(N —1)hco —h(l~-~)]

xr[E„+(N—2)hco —h(ljv —2)] 'r rlE„+hco —h(lt)] 'r ~nl). (1)

Equation (1) hides the N —
1 summations over intermediate states by repeated use of the closure relation. z4 In Eq. (1),

~
nl) represents the radial wave function and E„represents the energy for the bound state having principal quantum

number n and orbital angular momentum i; (EL
~

represents the radial wave function for the continuum final state with

electron energy E and orbital angular momentum L; ll, !2, . . . , l~-~ represent one particular set of intermediate-state
orbital angular momenta —the total N-photon ionization cross section is expressed in terms of a summation of the
square of the absolute value of the amplitude in Eq. (1) over different sets of i s; finally, the one-electron radial Ham-
iltonian for a particular orbital angular momentum l; is defined by

h(i;)—= —
2 d /dr —1/r+i;(i;+1)/2r .

Define now the following states:

~
X)= [E„+(N —1)hco —h(l~ ~)] 'r[E„+(N —2) hco —h(4 —2)l 'r rlE„+ hco —h(l l)] 'r

~
nl),

5,'~ =(EL ~rlE„+(N —1)hco —h(lg —l)] 'r r[E„+hco —h(ll)]

(2)

(3a)

(3b)

where ~X) (()I,'~ ) is the state resulting from (N —1)-fold excitation (deexcitation) of
~
n!) ((EL

~
). In terms of the

states
~
X) and (l'~, the radial matrix elements in Eq. (1) may be written in three different ways, which may be com-

bined to form the following expression:

P(li, lg, . . . , lac i,L) hco) =(EL ~r ~&)+(&')r )nl)

—(k'~ [E„+hco—h(l))]r '[E„+2hco—h(l2)]r

r '[E„+(N—1)hco —h(4 ~)] ~X), (4)

which is easily seen to be variationally stationary with respect to changes in ~X) and 4.'~. For two-photon processes,
Eq. (4) reduces to the form of the variational principle developed for the T-matrix element for scattering processes by
Nuttall and Cohen. In our numerical calculations we represent the states

~
lj.) and 4.'~ as linear combinations of M

Slater functions of the form r ' e l'" and r ' e ~', respectively, where 1 si ~M. In addition, the function(I,+i) —„(I,+i)

r '
~
nl) is included in

~
X) and r '

~
EL) is included in

~
X ) to speed convergence; they represent the dominating

terms in the asymptotic forms of ~k) and ~X'). The matrix elements in Eq. (4) are evaluated analytically and the
coefficients of the Slater functions are evaluated by the requirement that Eq. (4) be variationally stationary.
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TABLE II. Two-photon ionization cross section (cm /W) of
H(ls) for linearly polarized light above the one-photon ioniza-

tion threshold.

200
400
600
800

Kl'

2.611 x 10
1.572 x 10

Ka

3.02 x 10
2. 15 x 10
2.62 x 10
1.58 x 10

Present

2.990x 10
2. 156x 10
2.619x 10
1.577 x 10

'Klarsfeld, Ref. 13b. Karule, Ref. 14b.

For two- and three-photon ionization of H(ls) below
the one- and two-photon ionization thresholds respective-

ly, we used P =0.5 and M =40. Our results converged to
ten or more significant digits for all photon frequencies,
even those quite close to intermediate-state resonances,
with the exception of frequencies approaching the one-
and two-photon ionization thresholds, respectively. For
photon frequencies above the one-photon ionization
threshold in the case of two-photon ionization of H(ls),
we find that more care in choosing the value of P is

necessary to obtain adequate convergence. In particular,

p must be chosen to be a complex number. 26 In this
case, with M=40, convergence is only obtained to four
significant figures, although we are still investigating im-

proved numerical procedures for the case of above-
threshold ionization.

Our variational results for the two- and three-photon
ionization cross sections of H(ls) below the one- and
two-photon ionization thresholds respectively, are shown

in Figs. 1 and 2. Numerical values at selected wave-

lengths are compared with the results of others in Tables
I, II, and III. In the two-photon ionization case, our re-
sults in Table I lie within 1% of those of all others for
wavelengths above 1200 A; for wavelengths of 1200 A
and smaller, our results in Tables I and II agree best
with those of Laplanche et al. ' and Karule. ' b In the
three-photon ionization case, our results in Table III
agree best with those of Laplanche et al. '

Generalization of the variationally stable amplitude in

Eq. (4) to multielectron atoms is complicated because of
the difficulty of separating angular and radial factors.
An exception is the special case of two-photon processes,
for which it is not necessary to compute the inverse of
the dipole operator. For higher-order multiphoton pro-
cesses, Eq. (4) may be cast in the form of a perturbation
expansion in the electron correlation operator. Generali-
zation of Eq. (4) for high-order processes mediated by
operators other than the dipole operator is straightfor-
ward. Our work on these topics will be presented else-
where.

We thank L. Spruch for helpful discussions and cor-
respondence. This work was supported in part by Na-
tional Science Foundation Grant No. PHY-8601429.

'A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. London A
233, 70 (1955).

E. Gerjuoy, A. R. P. Rau, and L. Spruch, Rev. Mod. Phys.
55, 725 (1983).

3C. Schwartz, Ann. Phys. (N.Y.) 6, 156, 170 (1959).
4Y. M. Chan and A. Dalgarno, Proc. Phys. Soc. London 85,

227 (1965).
5T. N. Rescigno and C. W. McCurdy, Phys. Rev. A 31, 624

(1985).
6G. A. Victor, Proc. Phys. Soc. London 91, 825 (1967).

Note that while wave functions were calculated variationally in

this paper, the T-matrix amplitudes were not.
7Y. Gontier and M. Trahin, Phys. Rev. 172, 83 (1968), Eqs.

(I)-(»).
SY. Gontier and M. Trahin, Phys. Rev. A 4, 1896 (1971).
9T. N. Chang and R. T. Poe, J. Phys. B 9, L311 (1976).

'OM. Aymar and M. Crance, J. Phys. B 14, 3585 (1981).
''W. Zernik, Phys. Rev. 135, A51 (1964); W. Zernik and

R. W. Klopfenstein, J. Math. Phys. 6, 262 (1965); W. Zernick,
Phys. Rev. 176, 420 (1968).

'2F. T. Chan and C. L. Tang, Phys. Rev. 185, 42 (1969).
13'S. Klarsfeld, Lett. Nuovo Cimento 2, 548 (1969).
13bS. Klarsfeld, Lett. Nuovo Cimento 3, 395 (1970).

TABLE III. Three-photon ionization cross section (cm6/W~) of H(ls).

Linearly polarized light
LDFJR' KVb Present

Circularly polarized light
LDFJR' Present

1900
2000
2100
2200
2300
2400
2500
2600

1.186x 10
5.581 x 10
2.542 x 10
1.593 x 10
2.650 x 10
7.125 x 10
2.980x 10
1.008 x 10

5.577 x 10
2.582 x 10
1.590 x 10
2.599 x 10
6.422 x 10
3.034 x 10
1.011 x 10

1.172 x 10 6

5.429 x 10
2.541 x 10
1.589 x 10
2.641 x 10
7.057 x 10
2.948 x 10
1.002 x 10

2.479 x 10
1.365 x 10
5.771 x 10
3.957 x 10
3.853 x 10
3.935 x 10
3.998 x 10
3.947 x 10

2.459 x 10
1.326x 10
5.776x10 4'

3.945 x 10
3.840 x 10
3.917x 10
3.972 x 10
3.906x 10

'Laplanche et al. , Ref. 15. Khristenko and Vetchinkin, Ref. 16.

406



VOLUME 61, NUMBER 4 PHYSICAL REVIEW LETTERS 25 JULY 1988

'"'E. Karule, J. Phys. B 4, L67 (1971).
14bE. Karule, J. Phys. B 11, 441 (1978).
5G. Laplanche, A. Durrieu, Y. Flank, M. Jaouen, and

A. Rachman, J. Phys. B 9, 1263 (1976).
S. V. Khristenko and S. I. Vetchinkin, Opt. Spektrosk. 40,

417 (1976).
17A. Maquet, Phys. Rev. A 15, 1088 (1977).
'SR. Shakeshaft, Phys. Rev. A 34, 5119 (1986).
' M. R. Teague and P. Lambropoulos, J. Phys. B 9, 1251

(1976).
M. Edwards, X. Tang, P. Lambropoulos, and R. Shake-

shaft, Phys. Rev. A 33, 4444 (1986).
'A. L'Huillier, L. Jonsson, and G. Wendin, Phys. Rev. A 33,

3938 (1986); A. L'Huillier and G. Wendin, J. Phys. B 20, L37
(1987).

A. F. Starace and T. F. Jiang, Phys. Rev. A 36, 1705
(1987).

Bo Gao and A. F. Starace, unpublished.
24Cf. Eq. (13) of Ref. 7.
25J. Nuttall and H. L. Cohen, Phys. Rev. 188, 1542 (1969).

See also Ref. 5, Sec. VI.
26T. N. Rescigno, Phys. Rev. A 31, 607 (1985).

407


