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Linear Response and Plasmon Decay in Hot Gluonic Matter
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The current controversy over the damping of color oscillations in a quark-gluon plasma is resolved
through a gauge-invariant linear-response analysis of relevant physical processes. The plasmon decay
rate is shown to be y= —1 IN, g T/24tt to lowest perturbative order, but this result does not survive at
higher orders. A self-consistent estimate suggests that plasmon decay is in fact a nonperturbative
phenomenon governed by static screening eff'ects.

PACS numbers: 12.38.Mh

What makes a plasma more than just a simple aggre-
gate of particles is that apart from the single-particle
properties of the underlying fields it also displays collec-
tive behavior characteristic of the statistical ensemble.
The simplest such quasiparticle excitation, the plasmon,
is the quantum of coherent fluctuations in the charge or
color density of the plasma. Plasmons propagate via
normal modes, typically plane waves of amplitude
-exp[i[k. x —to(k)t] —y(k)t]. Here co(k), the energy
of the plasmon, and y(k), its decay rate, must meet the
following criteria: (i) y~ 0, on grounds of stability of
the system, and (ii) y« ~

to ~, or else the mode is over-
damped and of little interest.

With quark-gluon-plasma physics rapidly gaining
ground as an experimental science, ' its theoretical un-

derstanding has become important. However, in quan-
tum chromodynamics (QCD) even concepts as basic as
plasmons are poorly understood and a consistent scheme
for the calculation of quantities such as to and ) is need-
ed. To set the stage, let us first review how this is done
in a simpler theory, quantum electrodynamics (QED).

In any field theory, the response of a plasma to small
external perturbations is described by a linear response-
function (LRF). For perturbations which couple to a
Heisenberg operator 0, the LRF is given by the retarded
commutator

iD ~(x, t;x', t') = e(t —t')([O(x, t ),O(x', t ') ]),

where ( ) denotes averaging over the unperturbed en-
semble. In Fourier space, D (k, ro) is an analytical con-
tinuation of the imaginary-time propagator D (k,ito„

to+i rt), the correct continuation being uniquely fixed

by the requirement D~(k, to) —1/co for ~ro~ ~. 2 I
shall continue this discussion in the much simpler
imaginary-time formalism.

In QED, we wish to study fluctuations in the charge
density and therefore apply an electromagnetic source
field (generated by an external current) which couples
locally to the charge current j„(x). The plasma
responds to the perturbation, producing a disturbance in

the current at the detector, and we identify (j„(x)j,(y))
as the LRF [see Fig. 1(a)]. Since j„(x)=y(x)y„y(x)

(a) ~/
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FIG. I. The linear-response function for (a) a generic
current-current interaction, and typical physical processes
dominated by current-current interactions: (b) on-shell ampli-
tude, (c) Wilson loop, and (d) meson self-energy.

is conserved (B„j„=0)and gauge invariant, the LRF is
both transverse and physical.

At T&0, an arbitrary transverse tensor II„„has two
independent components,

k' 1 k4
rIE = rI44, rI~ = rI;; rI44

k~ 2

corresponding to two independent transverse projectors,
P and P, the latter also being transverse to the three-
vector direction of propagation k. Taking II„„to be the
one-particle-irreducible polarization tensor, the LRF in

QED can be written as

( ) 2 II44Pp y IIM Ppg y
E M

JpJv k t
2

+
k —II44 k —IIM

Analyzing the linear response of a QED plasma thus
boils down to the computation of the physical transverse
polarization tensor II„„. From its components one ob-
tains the poles of the LRF at the complex values
rop st(k) —

imp st(k), which are just the E and M disper-
sion relations that characterize the corresponding normal
modes of the plasma.

Attempts have been made to apply the above formal-
ism to a high-temperature QCD plasma (T»AQcn),
where g(T) «1 and perturbative calculations are possi-
ble. As often happens, what works for the Abelian
theory does not translate readily to the non-Abelian case,
and a serious disagreement presently exists concerning
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the plasmon decay rate y at the one-bare-loop level. At
this lowest perturbative order, where the dominant
damping mechanism is purported to be the decay of
plasmons into gluon pairs, even the sign of y, not to men-
tion its magnitude, is controversial.

Early computations, focusing on II„, at the one-
bare-loop level in covariant ( gauges, yielded a
dependent y= —O(g T), with the negative sign persist-
ing for all values of (. This result has been interpreted
in various ways. Kalashnikov and Klimov4 deemed this
value to be too small in magnitude and concluded that
within the limits of validity of their one-bare-loop ap-
proximation, y should be taken to be identically zero.
They therefore attached no special significance to the
negative sign. Gross, Pisarski, and Yaffe interpreted
the negative sign as being an artifact of the bare calcula-
tion; a self-consistent calculation (i.e., with full propaga-
tors replacing bare ones) would, they argued, make y =0
at the one-loop level. More recently, Lopez, Parikh, and
Siemens have conjectured that the negative sign is re-
lated to asymptotic freedom and should therefore persist
in a gauge-invariant calculation, signaling the instability
of the perturbative vacuum at nonzero temperature. In
the first genuine attempt at gauge invariance, quantum
fluctuations of the plasma are integrated out in the pres-
ence of a background field to obtain an effective action
which is invariant under gauge transformations of the
background but depends parametrically on the gauge of
the fluctuations. Following Weldon, ' quantities such as
to and y can then be extracted from the background-field
effective action. For an SU(N) theory with a covariant
g-gauge fixing of the quantum fields, the decay rate at
the one-bare-loop level is found to be

y$' = —[ll+ 4 (g —1) ]Ng T/24m,

which is negative for all values of g. Hansson and
Zahed7 argue that for a specific fixing of the gauge,
which they determine at the one-bare-loop level to be
Landau gauge, (=0, the effective action can be given a
gauge-invariant interpretation.

In direct opposition to the above are the temporal
(Ao 0) gauge calculations, which yield a positive
value for y. Kajantie and Kapustas considered perturba-
tions which couple to the color field rather than the
current, leading to the correlation (E'(x)Eb(y)), which
in temporal gauge is simply related to the polarization
tensor. Dispersion relations based on the latter yield for
the plasmon decay rate the formula

y$' =+Ng T/24m

In response to questions about its gauge invariance, this
result has been reproduced in Coulomb gauge (where the
calculation is considerably more involved) by Heinz, Ka-
jantie, and Toimela. Needless to say, a positive sign is

very satisfying and causes no problems of interpretation.
These conflicting results raise several questions, which

this work seeks to answer: (i) What is the correct physi-
cal definition of y (and other plasma parameters) for a
non-Abelian gauge theory, and is the corresponding y$'

positive or negative? (ii) How is y$'~ modified by self-
consistency, and what does this imply for the dominant
damping mechanism? (iii) What would a self-consis-
tently negative sign for y imply?

In the following, I outline the construction of a
gauge-invariant formalism for analyzing the response of
non-Abelian systems, and use it to compute the correct
QCD plasmon dispersion relations. From these I obtain
the plasmon energy and decay rate at the one-bare-loop
level and estimate the changes that a self-consistent cal-
culation would bring about. I end with some con-
clusions.

Controversies in gauge-theoretical calculations can
often be traced to conflicting ways of extracting physical
information from the theory. Not all such approaches
are infallible, and among the works just discussed one
finds the following: (i) A gauge-dependent quantity
(e.g. , II„„) is computed in a ghost-free gauge. It is be-
lieved that in certain limits this may give physical re-
sults. (ii) A gauge-dependent quantity is computed in a
variety of gauges. In an expansion of that quantity in

certain limits, some terms may turn out to be gauge in-

dependent; these are ascribed a physical meaning. Al-
though (ii) is somewhat more reliable than (i), both can
give misleading results in exploratory calculations (these
and other issues will be discussed more completely in a
lengthier article' ).

The present gauge-invariant linear-response formalism
for QCD is based on the only foolproof method that I
know for extracting physical information from a gauge
theory. It consists of three steps: (i) Select a physical
process of relevance to the observable that one wishes to
compute. (The chosen process need be neither practical
nor unique, but computationally simple. ) (ii) Write
down the gauge-invariant amplitude corresponding to
that process. (This will typically be a closed Wilson loop
or an on-shell amplitude. ) (iii) Compute the amplitude
in any convenient gauge.

In QCD, we wish to study fluctuations in the color
density of the plasma, and so, keeping the similarity to
QED as close as possible, we couple the color current to
source and detector fields [see Fig. 1(a)]. The color
current, which is of the form

j„'=@y„T'y+ (Yang-Mills pieces),

is neither conserved nor gauge invariant. Therein lies
the crux of the problem.

The remedy is to consider Fig. 1(a) as originating
from physical processes dominated by current-current in-
teractions, illustrated generically in Figs. 1(b)-1(d). In
the linear-response approximation, the source is weak
and one needs to consider only two-point exchanges of
the form I d,&„&„DI„„„„where I is the effective vertex
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A

and D the effective gluon propagator. Now note that I

is process dependent: It knows about the nature of the
source and detector (spin and color representations,
mass, etc. ) and the details of the process. On the other
hand, D is characterized only by the momentum transfer
and knows nothing about the details of the process or the
nature of the source and detector. Clearly, D is nothing
but the conventional gluon propagator D in some chosen
gauge augmented by additional gauge-dependent terms
8'D arising from vertex corrections.

Cornwall" has discussed an elegant and economical
scheme for extracting BD from any physical process
dominated by current-current exchanges. The idea is to
use Ward identities to "pinch out" internal source and
detector propagators from certain vertex diagrams, yield-
ing one-gluon-exchange parts which are indistinguish-
able from propagator corrections. When added to the
usual propagator, a gauge-invariant, transverse effective
polarization tensor II results. Accordingly, D can be

written as the sum of two parts. The longitudinal part is

gauge dependent and not quite uniquely defined since it
gives a vanishing contribution to physical processes; it
serves only to make the effective propagator invertible
and contains no physics. On the other hand, the trans-
verse part is gauge invariant and uniquely defined; it
occurs in every physical process involving a current-
current interaction.

Since all physical information about the plasma in the
linear-response approximation is contained in II, all we
need to do to obtain the gauge-invariant linear-response
function for QCD is to transcribe the QED result, re-
placing II by 8'blI everywhere:

/ Q b t Phys ~ Qb, 2 1 z44s ~y PiM P~

k II44 k —II~,
Using light-cone gauges and the process depicted in

Fig. 1(d), Cornwall, Hou, and King" have shown that II
at the one-bare-loop level is given by the expression

II,p=4Ng (k B,p k,kp) — +Ng „d41
d41 2 4l.lp

—k,kp

1~ 1+k t " lt 1+k 2

26,p

lz

where d„l:—d"1/(2 n)" and the integrals are to be evalu-
ated at finite temperature. (The uncontroversial quark-
loop contribution has been omitted for simplicity. ) I
have rederived this result in covariant g gauges for other
processes in order to verify both its gauge and process in-

dependence. '

Let us brieffy revisit the background-field method. In
a very useful and instructive calculation, Elze et al. '

have derived the relationship between the polarization
tensors in the ordinary and background covariant
gauges. If we compare their results for (=1 with the
above expression for II, an important relationship
emerges:

rr =rrF'G
ap ap

=II~p '+2Ng (k S,p —k,kp)
1 1+k

where FBG stands for Feynman background gauge.
This verifies the assertion of Hansson and Zahed that in

a specific gauge, the background-field eff'ective action
has a gauge-invariant meaning. However, that gauge is
seen to be Feynman gauge and not Landau gauge as they
have claimed; I do not yet understand the reason for this
discrepancy.

The poles of the gauge-invariant LRF for QCD give
E and M-type dis-persion relations ro(k) —iy(k) in

terms of the components of H. At the one-bare-loop lev-

el, one gets for co the uncontroversial result co cop

+O(k ), where top is the O(gT) plasma frequency and
the subleading terms differ for E and M modes. '

y
at this level is the same for both modes and is given by

"(k)=- 11Ng T
~

N
~

' d'1 B(l —
rv )

48tr2 " (1+k) 2

= —11Ng 2T/24 , tr

which is of course the result of Hansson and Zahed in

Feynman gauge. The coefficient ( —11) is precisely the
one that characterizes the gluonic contribution to the
gauge-invariant, asymptotically free P function, which
verifies the gauge invariance of our formalism and
confirms the conjecture of Lopez, Parikh, and Siemens.
We can write this coefficient in an instructive way,

' viz. ,—11=1—6 —6. Temporal gauge, which is an incom-
plete gauge at T&0 since it excludes certain physical
field configurations, ' contributes only the 1, leading to
the erroneous positive sign for y. The Feynman-gauge
propagator alone contributes 1 —6; the extra —6 comes
from vertex corrections which make the total gauge in-

variant.
It is obvious from the preceding expression for y$'

that y depends crucially on the poles of the internal
propagators and therefore the one-bare-loop result has
little significance. A self-consistent calculation is

mandatory and results in the bare expression being re-
placed by one of the form

1INg'T
~

tv
~

d'1 &Il' —to' —RelIp(tv, l) j

48'' ~a ~ (1+k) '- II, (0,1+k)
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y&P(k) =— "+," ~g'T~, lkl
~e ~rnag,

( I k
I «mel, tttmag).

The self-consistent analysis thus suggests that the
dominant damping mechanism is not the decay of a
plasmon into gluon pairs but rather its scattering off
static color fields. Nonvanishing screening masses ap-
pear to be necessary for a finite y; this is reminiscent of
the divergence of the total scattering cross section for an
unscreened Coulomb potential in elementary quantum
mechanics. The magnitude and sign of c,1 and c,s, in

relation to the strengths of the screening masses, will

determine the overall sign of y. Should the negative sign
survive the self-consistent calculation, it would be yet
another indication of the instability of the high-T pertur-
bative vacuum. ' '

In conclusion, I have constructed a gauge-invariant
linear-response formalism for QCD with a structure very
similar to that of QED and thereby resolved the contro-
versy over the sign of the plasmon decay rate at lowest
order. I have further shown that in a self-consistent cal-
culation, y depends nontrivially on the electric and mag-
netic screening masses, neither of which is perturba-
tive. ' In the spirit of the original calculations, we are
therefore obliged to take y =0 up to small, but now non-

perturbative, corrections.
Finally, consider real-life quark-gluon plasmas of the

where A, 8=E,M and g~ttc~tt =l. Calculation of the
coefficients catt is straightforward but algebraically tedi-
ous and for the present we must content ourselves with

estimating the expression as it stands. Observe that the
6 function in the above integral peaks on those values of
/ which satisfy the dispersion relation for to~ st(l), and
that in the long-wavelength limit the denominator is

dominated by the electric or magnetic screening masses.
With c,1,c,s denoting simple combinations of catt, we

obtain the estimate

type that might be produced in relativistic heavy-ion col-
lisions. ' For such plasmas, the coupling constant g(T, p)
is large and it is doubtful whether linear-response theory
would be of much use. To obtain meaningful results one

may have to invent a gauge-invariant nonlinear-response
theory and treat it nonperturbatively, for example, on a
lattice, to obtain meaningful results. Here again, the
"physical process" approach should prove useful.
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