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Critical Dynamics of the Sol-Gel Transition
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The dynamics of the sol-gel transition is probed by use of quasielastic light scattering. A type of criti-
cal dynamics is observed that is associated with a divergent friction, rather than a singularity in a ther-
modynamic quantity. Several novel eff'ects are reported, including power-law time decay of the intensity
autocorrelation function, critical slowing down of the average relaxation time, and observation of a frac-
tal time set in the scattered field.

PACS numbers: 82.70.Gg, 05.40.+j, 61.41.+e

A gelling solution at the sol-gel transition is a unique
state of matter that is neither liquid nor solid, but rather
is in transition between these states. For example, the
viscosity of the incipient gel is infinite, but the modulus is
zero. Recently we have come to appreciate the unusual
dynamics of this transition state by using the technique
of quasielastic light scattering' to probe the relaxation of
density fluctuations of wave vector q by the autocor-
relation function of the scattered intensity, 1(q, t)
=(I(0)I(t)). In many systems the decay of density fluc-
tuations can be described by a single relaxation time (ex-
ponential time decay). More complex materials, such as
polymeric melts near the glassy transition temperature,
exhibit a spectrum of relaxation times that gives a
"stretched" exponential decay, exp[ —(t/r) b] where
0 & b & 1. Regardless of the form, all known 1(q, t) can
be described by some characteristic time r. In this paper
we demonstrate that in a gelling solution the characteris-
tic time diverges at the sol-gel transition. This observa-
tion is unexpected and must not be confused with the
usual critical slowing down in second-order thermody-
namic phase transitions, since scattered-intensity mea-
surements show that the compressibility does not diverge
at the gel point. The fact that a critical slowing down

should not be observed in quasielastic light scattering at
the gel point has been elaborated by de Gennes, 2 who

points out that the longitudinal modes observed in a qua-
sielastic light-scattering experiment should be insensitive
to the formation of a weak gel phase.

The observation of an infinite characteristic time im-

plies two possible modes of decay. First, the decay can
be described by a function that is scaled by a divergent
characteristic time, e.g. , an exponential decay with

This is precisely the description of critical slow-

ing down in second-order phase transitions. Second, the
form of the decay can be independent of the time scale,
at least on times short compared with the characteristic
time. This is possible if the decay is described by a func-
tion that does not contain a time scale—a power law. In
fact, we will show that at the gel point a decay of the
form 1(q, t) —I/t is observed over the experimentally
accessible 5 decades in time. Before the gel point, this

power-law decay is truncated by a stretched-exponential
tail, at a certain divergent characteristic time. A simple
description of these phenomena is proposed, and we show

that the detected photons divide the time axis in a self-

similar way (fractal time).
Silica gels were prepared in methanol from 1.QM

tetramethoxysilicon (TMOS), 4.0M H20, and 0.1M
NH3OH base catalyst. To avoid dust contamination,
preparation was conducted in a clean bench, and the
final solutions were either filtered into scattering cells
with 0.2p polytetrafluoroethylene (PTFE) filters, or cen-

trifuged for 15 min at 30000g. Quasielastic light-

scattering measurements were made in the homodyne
(self-beating) mode with an argon-ion laser at X 457.9
nm, and a 256-channel correlator. Very near the gel

point, correlation functions were collected over an exten-
sive relaxation-time regime by running at three delay
times, 3.6X 10, 2.0&& 10, and 1.3 x 10 s, and

merging the data. A similar data-merging technique

employing the two delay times 1.0X 10 and 1.0X 10
s was used to integrate 1(q, t) to obtain the average re-

laxation time. This integration was performed numeri-

cally, without recourse to curve-fitting techniques. The
homodyne dynamic structure factor S(q, t ) was obtained

by subtraction of the calculated incoherent baseline from

I(q, t) and normalization to unity at t 0. Gel points
were determined by an attempt to dilute aliquots of the
reacting mixture.

Correlation functions taken prior to the sol-gel transi-
tion at roughly 10-min intervals, plotted logarithmically
in Fig. 1, indicate an approach to power-law decay at ts, ~

(=406 min). In fact, at the gel point a correlation func-
tion taken over an extended relaxation-time domain (see
Fig. 2) shows an initial exponential followed by -5 de-

cades of power-law decay with S(q, t) —t

The initial exponential relaxation simply indicates a
fastest observable decay in the system.

A critical plot (Fig. 3) of the arithmetic average relax-
ation time (r), obtained by numerical integration of
S(q, t) taken over a 4.4-decade time domain, shows

the divergence (r) —e ' —' (run-to-run uncertainty)
where e ~ts, ~

—t ~/ts, ~. It is noteworthy that although
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Before proposing a description of these data, we briefly
mention the connection to fractal time, a subject dis-
cussed by Mandelbrot. The intensity autocorrelation
function is just the density-density correlation function
(p(0)p(t)) of the detected photons, since the intensity is
the number of detected photons per unit time. For sim-
plicity, imagine the time axis as a one-dimensional space,
and replace each detected photon by a unit mass. Then
we can easily visualize a disconnected mass fractal with
a fractal dimension less than 1. For a fractal object the
density-density correlation function is the power law
(p(0)p(r))- I/r, and so, observing that the dimen-
sion of time is d =1, for a fractal set on the time axis we

expect the power-law decay I(q, t) —I/t '. Thus the
fractal dimension of the detected photons is D~
=1 —0.27 =0.73. lust as a mass fractal has no internal
characteristic length, fractal time lacks an internal
characteristic time: This is evidenced in the divergent
times we observe.

The physical picture that we propose describes the re-
laxation of a density fluctuation as a sum of a normal
cooperative diffusion component and an anomalous con-
tribution due to the self-diffusion of clusters. Since the
cooperative diffusion coefficient only contributes a fast
relaxation and is not responsible for the unusual features
we have observed, we will focus on the self-diffusion
term. In order to understand the self-diffusion of a clus-
ter, one must consider the structure of the incipient gel.
The incipient gel is a self-similar distribution of fractal
clusters of all sizes, from monomers to the infinite clus-
ter. Self-similarity requires that the average separation
distance S between clusters of radius R+ 1lnR be pro-
portional to R, so that all clusters see the same environ-
ment, regardless of the size. Use of S-l/N(R)'i -R
then gives the number distribution N(R)dlnR-R
&&dlnR, where d is the spatial dimension [R -m then
gives the well-known hyperscaling relation N(m)dm
-m ' diDdm for the mass distribution].

Consider a cluster of radius R attempting to diffuse in

the incipient gel. Since branched polymers of compara-
ble size cannot overlap, it is reasonable to describe the
diffusion as Stokes-Einstein type, but in a medium with a
size dependent v-iscosity (i.e., the viscosity depends on
the cluster size). In other words, we expect the diffusion
coefficient of a cluster of radius R to be proportional to
that of a sphere of radius R. On the time scale on which
this cluster relaxes (moves a distance proportional to R)
smaller clusters will have already relaxed, but much
larger clusters wi11 appear nearly stationary. Thus the
smaller clusters form a fluid with a finite viscosity, em-
bedded in a medium of essentially immobile clusters
which form a tortuous system of caverns through which
the cluster must diffuse. From self-similarity we recog-
nize that the tortuosity is the same for all clusters, and
simply reduces the diffusion coefficient by some fixed,
radius-independent amount. Thus the central issue is the
viscosity ri(R) of the fluid of clusters of radius less than

R. If we note that the cutoff in the size distribution is

the correlation length g (the typical cluster radius), a

fluid of viscosity q(R) will be observed e-R
beneath the gel point, where g-e '. Beneath the gel

point the bulk viscosity diverges like q-e ", and so the

viscosity felt by a probe of radius R scales like

q(R) -R"i'. Use of the Stokes-Einstein formula

D, (R) =kT/6xriR for the diffusion coefficient then gives

D, (R)—1/R'+" ". (We obtain the same result if we as-

sume that a probe larger than the correlation length feels

the bulk viscosity, and a probe smaller than the correla-

tion length feels a finite viscosity, i.e., independent of ri

since ri diverges. )
To compute the observed quasielastic light-scattering

behavior we must address a final point: Since the sol-gel

transition is a connectivity divergence, not a therino-

dynamic phase transition, there are no singularities in

the free energy and thus no divergence associated with

the scattering from the undiluted incipient gel (experi-

mentally this is indeed the case). Physically, this implies

that the clusters neatly pack, so that the scattering from

a single cluster is screened by the presence of the other

clusters. In the absence of spatial correlations only the

diagonal terms in S(q) =(1/N )P(e " "' ) contribute,

and so the scattering from a cluster of mass m scales like

S(q )-rn, not S(q )-m f(qR ) . Our expression for the

self-diffusion contribution to the structure factor is then

S, (q, t) = mN(m) exp( —
q D, t) dm.

Since the momentum transfer and time appear as the
variable q t, a master curve will be obtained when plot-
ting against this variable, in agreement with experiment.

Beneath the gel point the number distribution is

N(m) —m ' i e m™where the exponential trun-
cates N(m) at the spica! cluster mass M, -g
Using DI —1/R' "" and D=d —P/v, where G —ei' is
the gel fraction, we obtain for the heterodyne correla-
tion function S, (q, t) =S(q, t) 'i2

S, (q, i)-r t'"'"', r '«&r„
( )

—(v+k —P)

S, (q, t)-exp( —(t/r ) ' +"], r»rz,

r, -l/q D, -e

(2a)

(2b)

(2c)

(2d)

Ignoring any effect on prefactors, the exponents in Eqs.
(2a)-(2d) apply to the homodyne structure factor if we

replace p by 2p in (2a) and (2b). The stretched-
exponential tail in (2c), obtained by the method of
steepest descents, is due to the diffusion of clusters larger
than the correlation length. These exponentially rare
clusters feel the bulk viscosity, i.e., D, -( "i'R ', and
are thought to be lattice animals, with D=2. The re-
laxation time in (2d) depends on the z average diffusion-
coefficient D, -g ' "i' and so is due to the diffusion of
a typical cluster of radius g. This slowest characteristic
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time diverges more strongly than (r), as seen in Fig. 3.
Equations (2a)-(2d) can be used to determine the gel

fraction and viscosity exponents. Define the exponents p
and tlr through S(q, t) —t e and (r) —e ~ and solve the
homodyne version of (2a) and (2b) to obtain the expres-
sion P =py/2(1 —(1) for the gel-fraction exponent. Use
of the experimental values &=0.27 and y=1.9 then
gives P =0.35, in good agreement with the percolation
prediction of P=0.39. To find k we use the dilute
solution experimental value v'=1.35 for TMOS and
correct this for cluster swelling to obtain the reaction-
bath value v=1.35X0.8 =1.08. Use of k =y —v+P
from (2b) then gives k =1.5. This value is in good
agreement with the viscosity measurements reported re-
cently by Colby et al. for the base-catalyzed TMOS
system, which gave k =1.3, but does not agree with the
de Gennes prediction of k =0.7, which is based on an

analogy between the viscosity divergence and the diver-

gence of conductivity in a superconductor-resistor net-
work. Substituting these exponents into (2d) we pre-
dict r, -e z 6, in good agreement with our experimental
observation r, -e 2' —'. Finally, if the lattice-animal
dimension D=2 is used in (2c) we predict a long-time
tail of the form S(q, t) -exp —(t/r, ),again in agree-
ment with our observation of a stretched-exponential ex-
ponent of 0.65+ 0.05.

In conclusion, we have observed a novel kind of critical
dynamics near ts, l that is characterized by the presence
of a power-law spectrum of relaxation times, with a long-
est time that diverges at ts, l. This spectrum gives rise to
a power-law relaxation of the dynamic structure factor
and to divergent characteristic time scales. A simple
cluster diffusion model of the dynamics is proposed that
relies on the concept of a size-dependent viscosity, the
hyperscaling form of the size distribution, and the
screening of the scattered intensity. From this cluster

diffusion interpretation, we deduce the gel fraction ex-
ponent P-0.35, the viscosity exponent k =1.5, and find

a stretched-exponential behavior consistent with the
diffusion of exponentially rare lattice animals.
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