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We consider a class of singlet resonanting-valence-bond wave functions on a square lattice, with the
bond-length distribution as a variational parameter. This class contains the two limiting cases of the di-

mer wave function and of the Neel state. We present numerical calculations of the energy and the spin-

spin correlation functions up to very large lattice sizes (180x180) both for disordered states with ex-
ponentially decaying correlation functions and for ordered states. The energy of a disordered state can
be within 0.1% of our best ordered state ( —0.3344J/bond).

PACS numbers: 75.10.Jm, 74.20.—z, 74.70.Vy

The resonating-valence-bond (RVB) theory of high-T,
superconductivity recently developed by Anderson and
co-workers' has been shown to be consistent with many
striking experimental data. Its starting point is simply a
two-dimensional large-U Hubbard model on a square
lattice, which at half filling becomes a spin-2 Heisen-
berg antiferromagnetic model. This model has been ex-
tensively studied by many different techniques: spin-
wave theory, 2 variational calculations, 3 s exact diagonal-
ization of small systems, and Monte Carlo simula-
tions. For the spin--,' model on the square lattice, all
these investigations seem to conclude that the ground
state has long-range order, with a nonzero staggered
magnetization. But in 1D, it is known that quantum
fluctuations drive the system into a liquid singlet ground
state. The key assumption of the RVB theory is that
such a featureless singlet state may exist also in two di-
mensions, with an energy very close to the ground-state
energy. Experimentally, it has indeed been shown that
even a very small amount of doping can destroy Neel or-
der. In this Letter, we construct explicitly a series of
singlet wave functions with different kinds of long-range
order (algebraic and exponential correlations). After op-
timization, we find that most of them have a very low en-

ergy, comparable to the best estimate previously found
(E —0.334J/bond). '

Let us consider then a spin- —,
' antiferromagnetic Hei-

senberg Hamiltonian on a square lattice. For any bipar-
tite lattice, it is known that the ground state of such a
Hamiltonian is a singlet. Furthermore, Marshall has
shown that the ground-state wave function written in the
s' representation is real, with a sign given by

sgn[e(a, . . . , a„)]=(—1) (1)

where

I +) -X(.,1-
and P(crt, . . . , cr~) denotes the number of down spins on
sublattice A, for the spin configuration (tT, , . . . , tTtv).

Moreover, it is possible to write any singlet state as a
linear superposition of valence-bond states, correspond-
ing to all possible pairings of sites into singlets. In order
to enforce Marshall's sign rule, it is sufficient (but not
necessary) to consider only bonds from one sublattice
(A) to the other (8). We shall then introduce the fol-
lowing class of wave functions:

~
tit) = g &(i1 —j~) h(i. —j„)(itj~) (i„j„).
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In Eq. (2), h stands for any positive function and can be
interpreted as a weight factor for a bond as a function of
its length. Also, for any two lattice sites i and j, (ij)
represents a singlet bond connecting them. Indeed, for
any configuration, with bonds from sublattice 3 to 8
only, Marshall's sign rule [Eq. (1)] is clearly satisfied.
Any superposition of such valence-bond states with a
positive amplitude will preserve this property. However,
in Eq. (2), we have made the strong assumption that the
amplitude in the wave function can be factorized into a
product over bond amplitudes. Actually, calculations for
small systems" have shown that our taking into account
the inequivalence between dimer configurations has a
much smaller effect on the ground-state energy than al-
lowing longer bonds. '

Among all the states which can be described by Eq.
(2), one limit is provided by the dimer wave function in-
vestigated by Sutherland, ' as a model for an RVB state
with short-range correlations. In the other limit, when
the weight factor h is taken to be independent of the
bond length, we get the projection of the Neel state on
the singlet subspace. If h decreases with distance, by
tuning its decay rate, we get a smooth way to transform
a Neel state into a disordered state. In the intermediate
stages of this process, we expect to find a featureless,
liquidlike singlet, similar to the RVB state proposed by
Anderson.
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Another interesting feature of these wave functions is

that the calculation of expectation values for the energy
and the spin-spin correlation functions can be imple-
mented with only a few simple rules. In order to calcu-
late overlaps between two valence-bond configurations

I c~) and I c2), and matrix elements of S; Si between
those states, we need first to consider the loop covering'
of the plane associated to the configurations I c~) and

Ic2) (see Fgi. 1). We have then the following rules: (i)
(c~ I c2) =2 "",where N(c~, c2) is the number of loops
in the loop covering &c ~ I c2). (ii) (c l I S; Si I c2) =0 if i
and j belong to two different loops. (iii) (c~ I S; SJ I c2)
= T- —,

'
(c~ I c2) if i and j belong to the same loop, with a

minus sign when i and j belong to two different sublat-
tices, and a plus sign otherwise.

It is important to note that this construction can be
made only for a bipartite, and then unfrustrated, lattice.

Before discussing our numerical calculations, we

would like to emphasize the fact that a wave function
as shown in Eq. (2) is not in general equivalent to a
Gutzwiller projection of a free Fermi sea. The difference
comes from the fact that in order to go from the fermion
representation to the spin representation, one has to take
always the same ordering of the lattice sites. This in-

duces an extra sign which cannot, in general, be ex-
pressed as a product over bond amplitudes.

We use a Monte Carlo method to evaluate the spin-

spin correlation C;, =(Ilr I S; S, I y). Upon substitution
of the wave function Eq. (2), it becomes a weighted sum
over the ratio c;~ =&c~

I S; SJ I C2)/&c~ I c2):
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FIG. 1. The loop covering (c& ~cz) is obtained by the over-

lapping of two sets of bonds
~

c~& (solid lines) and I c2& (dashed
lines) on a square lattice. Each lattice site is connected by two
bonds to form loops. A loop has half of its bonds from

~
c~)

and half from
~
c2). In this example, there are six loops.
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where

El n

w(c) = g h(i, —j,), I c) = Q (ij,),
a 1 a 1

P(c], c) 2w(c1 )w(c2)(cl I c2)/(iir I tir).

Since the number of terms in the sum grows exponen-

tially with the size of the system, the phase space to be
summed over can be considered as an ensemble of pairs

(c~,c2) with probability distribution P(c~,c2). This in-

terpretation is allowed because P(ct, c2) is always posi-
tive. We define a fictitious energy for the pair (c~,c2),
E =logP(c~, c2), and use the standard Metropolis algo-
rithm as usual. '

The basic Monte Carlo step is to choose a site i and

one of its next-nearest neighbors j at random; exchange
the bonds connecting to the sites i and j with the transi-
tion probability that satisfies detailed balance. The ma-

trix elements are simply evaluated according to rules (ii)
and (iii) once the loop covering associated to the two

configurations is known.
For the wave functions dominated by short bonds, we

have a more efficient procedure: Find a loop that links

only the nearest-neighbor sites with half of its links

covered alternatively by dimers; shift all the dimers by
one lattice unit along the loop; this gives us a new state.
In practice, the loops are chosen by self-avoiding random
walks that are biased to make them easy to close. The
size of the loop (controlled by the bias) is made suffi-

ciently large to ensure erogdicity. We define the transi-
tion amplitude similar to above. Since both Monte Carlo
processes leave the weight invariant, any combination of
them may be used. In our calculations, boundary condi-
tions are periodic.

We have checked that the equilibrium does not depend
on the initial states, which can be taken as short- and
long-bond states. The computer program has been
checked with the Neel state, where the expected results
for correlations and finite-size corrections are recovered,
and with diagonalization of a small system. '

In our investigation, our strategy has been to start
from either the dimer state (the most disordered) or the
Neel state and to let h vary around those reference states
in order to lower the energy.

(a) Short bond waue -functions First, .—our results
confirm that when the maximum bond length is finite,
the associated wave function has short-range spin-spin
correlations, with an exponential decay at large dis-

tances. This result has been obtained in the case of the
dimer wave function from an approximate mappingls of
the loop soup onto an O(n) model with n =4. Our nu-

merical results may provide some indication that this

mapping is also valid when longer bonds are included.
We notice that after optimization, the correlation length
increases quickly as a function of the maximal length of
the bonds (see Table I and Fig. 2). The best estimate for
the ground-state energy has been obtained by addition of
an exponential tail to the weight function h (see Table
I). We find En =0.3341J/bond which is very close to the
result of series expansion. ' In this state the spin-spin
correlation function goes to zero at large distance, and so
there is no long-range order. At short distance, the
correlation function seems to decay algebraically with an

exponent around 1. But at large distance, this decay is

faster. These results lead us to conclude that there exist
some disordered states with a very low energy. This fact
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TABLE I. A summary of the short-bond states. The states
are defined by their variational parameters ai =h(2l+ I)/
h(2l —1) (with use of the Manhattan distance between i and j:

xj I
+

I yi y, I ), which have uncertainties of about a few

percent as estimated from the independent calculations of
derivatives of energy. All energies Eo (in the unit of J/bond)
are obtained on a 32x32 lattice with statistical fluctuations
0.0002 from Monte Carlo simulation. The finite-size eA'ect on
such a lattice is smaller than the statistical error. For those
states, spin-spin correlation functions fall off exponentially.
The correlation lengths (g) for the first three states are ob-
tained on lattice of sizes 32x32, 90x90, and 180x180. The
large lattices are used to avoid finite-size eft'ects. The unit of g
is the lattice spacing.

State

Dimer

(1,3)

(1,3,5)

Exponential

Ep

—0.302

—0.330

—0.3325

—0.3341

1.3

7. 1

15

Variational parameters

h(1) = I

ar =0 for I & 1

a I =0.17
aI =0 for I & 1

(a ~, a2) = (0.14,0.24)
aI=0 for I & 2

(a~, a2) =(0.125,0.25)
aI=0 33 for I & 2

shows that an RVB state would be quite competitive
compared with an ordered state. In order to make this
comparison more accurate, we studied some wave func-
tions with very long bonds.

(b) Wave functions with h(l) =1 ~ for large l.—We
have found that it is possible to generate wave functions
with a nonzero staggered magnetization, if h is smooth
and falls off asymptotically as h(l) =1 ~. However, the
short-length behavior of h is the most important for the
energy, and so we choose the following parametrization
for h: h(1) =1, h(3) and h(5) are free parameters, and
h(l) =h(5)(1/5) t' for 1)5. We have performed the
optimizations for the states with p =2, 3, 4, and 5; we

found that they all have very low energies, —0.3341,
—0.3341, —0.3344, and —0.3337, with staggered magne-
tization 75%, 65%, 45%, and 30% of the Neel, respec-
tively. The staggered magnetizations are obtained from
the correlation function (see Fig. 1) on a 128X128 lat-
tice. It decreases when p increases and seems to disap-
pear when p&5. (For p=5, the correlation can be
fitted with an algebraic decay with an exponent 0.6).
This behavior is also consistent with what a mapping of
the loop soup onto an O(n) model with long-range cou-

plings would give. The optimal energy within this class
of states is —(0.3344~0.0002)J/bond, which is lower
than what has been shown for the short-bond states (the
error bar is derived from the statistical fluctuation in

Monte Carlo sampling). This is consistent with an or-
dered ground state. However, the energy depends only
weakly on the staggered magnetization. This behavior

may have some analogy with the 1D spin- —,
' chain,
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where the staggered susceptibility diverges logarithmic-
ally with the system size. This implies that the energy
does not change much when a staggered magnetization
builds in. One might speculate from this that the 2D
system could also be close to criticality. This question
deserves further studies.

One consistency check that we have approached the
ground state from both the disordered and ordered sides
is provided by the fact that after optimization the ratios
h(3)/h(1) and h(5)/h(3) are very similar in the states
with algebraic and exponential tails.

It is worthwhile to stress that the spin-spin correlation
functions are isotropic, and decay much more slowly
with distance than the function h. This behavior is very
diff'erent from the case of the Gutzwiller-projected free-
fermion wave function, where the bond amplitude and
the correlation function as well decay like power laws.
This difference comes from the fact that we add
coherently wave functions which all satisfy Marshall's
criterion.
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FIG. 2. The spin-spin correlation C(r) =(—I)'+~+;(S;
.S;~,&/% as a function of distance. For a ordered state, C(r)
is not zero at large distance. This is shown in the upper curve
of the inset for the state with bond amplitude h(l) decaying
algebraically at large distance, as discussed in the text with
p=3. The lower curve of the inset is for the state labeled "Ex-
ponential" in Table I. In this case, C(r) goes to zero slowly.
The small, but nonzero, value of C(r) at large distance is due
to finite lattice size (128&128), since, on a 256X256 lattice,
this asymptotic value at large distance is reduced by roughly a
factor of 2. For the short-range states with a sharp cutoA' for
the bond length, C(r) decays exponentially with the distance.
The upper and the lower curves in the main plot are states la-
beled (1,3,5) and (1,3) in Table I. The base of the logarithm is
10. Squares and circles denote C(r) when r is along the axes
and diagonals of the lattice.
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To conclude, we have shown how to generate singlet
states which are very close in energy (the relative disper-
sion lies within 0.5%) and seem to be also close to the
best known estimates for the ground-state energy. For
the square lattice, those results confirm the claim that
RVB is at least not far energetically from the ground
state. ' However, our method has certainly a wide range
of application, since it provides a natural description of
systems with large quantum lluctuations. For instance,
it would be interesting to investigate systems where these
lluctuations are strongly enhanced, by the reduction of
the coordination number (honeycomb lattice), or by the
introduction of frustration '6 (via second-neighbor in-

teraction).
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