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By use of unitarity of the Kobayashi-Maskawa matrix, the rephasing-invariant measure BKM of CP
nonconservation is evaluated in terms of the moduli squared of four matrix elements, which are taken as
the four independent parameters. The striking feature of such a formulation is that the positivity of b(M
gives both upper and lower bounds on the matrix elements ) V,d ), ) V„), ) V&d ), and ) V„) .

PACS numbers: 12.15.Ff, 11.30.Er

Within the minimal standard model with three genera-
tions, all CP-nonconserving phenomena arise from the
presence of a physical complex phase in the Kobayashi-
Maskawa (KM) matrix' that appears as a result of the
diagonalization of the quark mass matrices. However,
the diagonalization of the quark mass matrices leaves a
certain arbitrariness in the definition of the fields corre-
sponding to the physical states, since they can be re-
phased. In the language of the quark mixing matrix
which is described by a 3 x 3 unitary matrix, this corre-
sponds to the freedom to multiply any row or column by
an arbitrary phase factor. This ambiguity has been ex-
ploited by many authors2 to choose the most convenient
parametrization of the KM matrix suitable for phenome-
nology. Since the physical observables are independent
of the quark phase convention, the notion of rephasing
invariants (parametrization independent) was introduced
in the three-generation case and generalized to four
and N generations' to dispel this ambiguity in the for-
mulation of CP-nonconservation parameters. The re-
phasing invariants, combined with a parametrization of
the KM mixing matrix with a set of parameters that
would have direct relations to measurable quantities,
have stimulated interest in this problem. In fact, it has
been recognized that a parametrization of the KM ma-
trix in terms of measurable quantities is very efficient
and useful to phenomenology. For instance, a step along
this direction was proposed recently by Bjorken and
Dunietz.

In this Letter, I suggest a general parametrization of
the KM matrix in which BUM, the measure of CP non-
conservation in the three-generations model, is expressed
in terms of the moduli squared of four tnatrix elements,
which I take for definiteness as ) V„q), ) V,d), ) V„b)
and ) V,b ) . These, then, suflice to determine the moduli
squared of the remaining five elements of the mixing ma-
trix. This parametrization is automatically rephasing in-
variant since it is expressed in terms of the modulus
squared of the matrix elements. To achieve such param-
etrization, the determination of the quartic and higher-
order rephasing invariants in terms of the quadratic ones
is necessary. These quantities, as recently emphasized

Im(T; Jp) (2)

where BKM=c~c2c3s~s2s3sinb in the KM parametriza-2

tion is the measure of CP nonconservation in the stan-
dard model. Since all Im(T~, ttt) are equal up to a sign,
expressing one of them in terms of ) V;, ) is sufficient for
this study. For example let us take

Tubed Vub Vcd Vud Vcb. (3)

From the orthogonality of the first and second rows of
the mixing matrix V, we have

Vcd Vud+ V Vus+ Vcb Vub (4)

by Nieves and Pal, ' enter in all charged-current process-
es involving Dirac fermions including the CP-conserving
ones. In addition, they showed that all higher-order re-
phasing invariants (more than four) can be expressed in
terms of the quadratic and quartic ones. Then the task is
to evaluate the quartic rephasing invariants in terms of
the quadratic ones in order to accomplish the proposed
parametrization. Following this parametrization, I pro-
pose an approach for detertnining the KM mixing matrix
from the analysis of BKM. It is based on the positivity of
b(M to determine the allowed range of ) V,d ), ) V„),

) V,d ), and ) V„) from the values of the elements ) V„d ),
) V„, ) and the existing range for the elements ) V„b) and

) V,b ) . One may wonder at this stage why I do not use
the existing values of the matrix elements to determine
bKM. Clearly, such analysis is not feasible at this mo-
ment because of the large uncertainties in the determina-
tion of the matrix elements ) Vt, ) .

I begin by defining the CP nontrivial rephasing invari-
ant formed by the product of four of the matrix ele-
ments,

Tl.Jp
=vl. VJpvlep VJ

As is well known, CP nonconservation is always dis-
cussed in terms of the imaginary and real parts of the
above quantity. The remarkable feature of the three-
generation model, as noticed by many authors, ' is that
all the nine imaginary parts of T;„tt contribute equally to
CP nonconservation, namely,
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Multiplying Eq. (4) by V„bV,b, we obtain

Vub Vcd Vud Vcb + Vub Vcs Vcb Vus

= —
I v„, I

'
I v, b I

'

Taking the imaginary part of both sides of Eq. (5), one

finds

O. I 2

O. to—

0.08—

I V„bl =0.0 t

Im (V„bV,d V„d V,*b ) = —Im (V„bV zcV„z Vcb ) (6) KM
p7S2 006—

This suggests that we write 0.04—

and

Vub Vcd Vud Vcb —X + l BKM

Vub V„Vus V,b =y —iByM,

(7a)

(7b)

0.02—

0.00
I I I I

0.0496 0.0497 0.0498 0.0499 0.0500 0.050 I

which translates, by use of Eqs. (5) and (7), to

X+I =
I Vub I

'I Vcb I

' (8)

The real part of V„b V,d V„d V,b is obtained by our taking
the modulus squared of the unitarity relation V,dV„d
+ Vcb Vub = —

Vcs Vus.

FIG. 1. The matrix element
t Vcd I

vs b(M showing the al-
lowed range for

t V,d I for each of the four cases, t V„b I

I Vub I 0 005
I Vub I 0.008, and

I Vub I
=0.0l, in

which the values of Vud and V,b are fixed to be I Vud I 0.9747,
and

I V,b I
=0.045.

I Vcd I I Vud I
+

I Vcb I I Vub I +2Re(Vub Vcd VudVcb) =
I V„ I

'
I Vus I

',

which leads to

Re(v„bvdv'dv~b) =x= —,
' (I V„I 'I V., I

' —
I vd I I vudI I vcb I I vub I

').

(9)

(10)

Hence from Eqs. (7) and (10), cbyM can be exactly expressed in terms of the moduli squared of the matrix elements as

~EM I Vub I I Vcb I I Vud I I Vcd I

'-x'
I Vub I I Vcb I'I V

I
'I V,dI (I V I I V I I VcdI I Vud I I Vub I I VcbI')'l4

which, in terms of the four basis parameters, becomes

~KM I Vub I I Vcb I I Vud I I Vcd I

'
—(I —Iv, I' —IvdI' —IvbI' —IvbI'+IvdI'IvbI'+IvbI'IvdI')'/4. (12)

The above relation is valid only in the three-generation
case, and thus when accurate data on the I V;, I become
available will put the KM model under severe test. Also,
it contains an ambiguity in the sign of 8xM. However,
this is no problem in the present case since I am using
8(M in a study of its implications on the structure of the
KM matrix rather than bKM. The result on 6(M [see Eq.
(12)] in terms of the I V;, I enables us to determine the
upper and lower bounds of the matrix elements

I V,d I,
I V„ I, I V,d I, and I V„ I. In this case, for example, to

determine I V,d I from the positivity of b(M, we fix

I V„d I and vary I V„b I and
I V,b I

in their allowed range.

t The allowed ranges for V„b and V,b, which is extracted
from experiment, depend on the assumed model for
strong interactions. I have used the whole range for V„b
and V,b to reduce the study to one analysis which in-
cludes all these models. s Following the same procedure,
one can determine the ranges for I V„ I, I V,d I, and

I V„ I by choosing the appropriate variables. To illus-
trate this point, I have plotted, in Fig. 1, the allowed re-
gion for I V,d I for the case

I V„d I
=0.9747 and

I V,b I
=0.045 with I V„b I taking several values. The ob-

tained KM matrix in absolute values is summarized as

0.9742 to 0.9752 0.220 to 0.222 0.003 to 0.010
I Vy, M I

= 0.2223 to 0.2236 0.9731 to 0.9747 0.035 to 0.065

,0.0026 to 0.0240 0.032 to 0.066 0.9980 to 0.9994,
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We observe that the magnitude of the I V;, I displayed
above suggests that the KM matrix is fairly asym-
metric. Further information on the I V~, I

can be ob-
tained from CP nonconservation in the neutral kaon and
8-meson systems if one believes that bttM is the only
source of CP nonconservation in the standard model.
To do such an analysis we need to express the KM struc-
ture of these CP-nonconservation parameters in terms of
the moduli squared of the matrix elements of V. This
study, which might serve as a possible way to understand
the structure of the mixing matrix, is under way. 'o I
also attempt, in the same study, to generalize such pa-
rametrization to the four-generation case and its conse-
quences on the 8-meson decay asymmetry and 8-8 mix-

ing.
I now turn to the implications of such formulation on

the structure of the KM mixing matrix. To illustrate, I
study the case where V„b is very small or zero. As is well

known, if V„b =0, there is no CP nonconservation. Set-
ting V„b =0 in the relation given by Eq. (12), one ob-
tains b)M =0 since I V„d I

2
I V,d I is equal to

I V„ I
2I V„, I

in that limit [see Eqs. (9) and (11)l and

in terms of the chosen variables, it leads to

I —
I v.d I

' —
I v.d I

' —
I v.b I

'+
I v.d I

'I v.b I

'

(14)

In fact, what is nice about this parametrization is that
none of the matrix elements can be zero if CP is not con-
served in nature a la Kobayashi-Maskawa. It is very
clear from Eqs. (9) and (11) that if any of the matrix
elements is zero bKM vanishes and the mixing matrix can
be made real. Furthermore, by looking at the relation

I V„d I I V,d I
=

I V» I I V„ I which is obtainable from

Eq. (9) in the limit V„b goes to zero, one sees that if one
of the nine two-by-two submatrices is unitary, the T;„tt
are real and there is no CP nonconservation. It is there-
fore crucial to determine the matrix element V„b to un-

derstand further the structure of the KM matrix.
In conclusion, I have emphasized the importance of

the rephasing invariants, in particular bKM, and the
consequences they have on the structure of the KM mix-

ing matrix. I have shown that BKM can be written as a
function of the moduli squared of the KM matrix ele-
ments, therefore enabling us to use directly the experi-
mental data on these eleinents when available. I have
also shown in a simple way that the standard three-
generation model does not exhibit CP nonconservation if
any of the KM matrix elements is zero and/or if any of
the nine submatrices of the KM matrix is unitary. The
positivity of b)M gives both upper and lower bounds on
the matrix elements I V,d I, I V„ I, I V,d I, and
The determination of V„b is urgently needed for either
refinement or testing of the KM matrix. These con-
clusions are valid only in the three-generation standard
model. This may serve as a good test for the KM model,

when improved theoretical and experimental results on
the CP-nonconservation quantities in the neutral K and
8 meson systems and accurate measurements of the

I V;, I matrix elements become available.
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After completing this work, I received two preprints,
one from Jarlskog" and the second from Branco and La-
voura, ' where they parametrize the mixing matrix in

terms of the moduli of the matrix elements. Their result
on the expression of bKM in terms of I Vt, I is in agree-
ment with mine.
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